• Title/Summary/Keyword: 분말 재사용

Search Result 287, Processing Time 0.029 seconds

The quality properties of PHC pile using waste pottery powder as cement admixture (폐도자기분말을 시멘트 혼합재로 사용한 PHC파일의 품질 특성)

  • Lee, Hwa-Young;Jeon, Sung-Hwan;Mun, Kyoung-Ju;So, Seung-Young;Soh, Yang-Seob
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.881-884
    • /
    • 2008
  • Nowadays, large amount of waste pottery annually are produced. It is needed that waste pottery is to are used as recycle materials in order to prevent environmental pollution and economic profits. Therefore, the purpose of this study is to present the method of utilizing the cement admixture that is obtained from waste pottery as the cement admixture. The test results that the replacement of waste pottery powder by cement admixture at the level 5%, 7% had effect on the compressive strength of the PHC pile. As a conclusion, improved strength recycled(waste pottery powder) PHC pile can be produced of cement admixture.

  • PDF

Development of self-sealing waterproof materials using GRT powder (폐타이어 분말을 이용한 자체보수성 방수재 개발)

  • Lee Dong-Min;Choi Joong-So
    • Resources Recycling
    • /
    • v.14 no.4 s.66
    • /
    • pp.22-33
    • /
    • 2005
  • Four sheet-shaped and one soft-shaped self-sealing waterproof materials were prepared to recycle some GRT(Ground Rubber Tires). Their physical properties were tested to consider characteristics of them. The self-sealing waterproof materials were consisted of GRT/super absorbent polymer(SAP)/binder and mold by a hot press after mixing with a batch-typed internal mixer. The average size of GRT particles was -40 mesh, SAPs were commercial GE-500F and poly(AM-SAS-AA) prepared in this work. Binders were PU. EVA, LDPE, SBR, and poly(2-EHA). And PU film was attached to improve the properties of waterproof materials. Characteristics of self-sealing waterproof materials consisted of by GRT/GE-500F/EV-600/PU film and GRT/GE-500F/SBR(vulcanization)/PU film among the developed self-sealing waterproof materials were similar to the commercial products. And properties of the soft-shaped self-sealing waterproof materials consisted of by GRT/GE-500F/Po1y(2-EHA) and CRT/Poly(AM-SAS-AA)/poly(2-EHA) were improved within from four times to twenty times compared to the one oi the commercial products.

The Influence of Extrusion Ratio on Microstructure and Thermoelectric Properties of Rapidly Solidified N-type $Bi_2Te_{2.75}Se_{0.15}$ (급속응고된 N-type $Bi_2Te_{2.75}Se_{0.15}$ 열전재료의 미세조직과 열전특성에 미치는 압출비의 영향)

  • 이상일;홍순직;손현택;천병선;이윤석
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2001.11a
    • /
    • pp.30-30
    • /
    • 2001
  • $Bi_2Te_3$계 열전재료는 200~400K 정도의 저온에서 네어지 변환효율이 가장 높은 재료로써 열전냉각, 바런재로 등에 응요하기 위하여ㅠ 제조법 및 특서에 관한 많은 연구가 진행되어 왔다. $Bi_2Te_3$계 화합물은 rhombohedral의 결정 구조를 가지는 층상 화 ;물로 결정대칭성으로 인해 연전기적으로 큰 이방성을 나타낸다. 현재는 일반향용고법에 의해서 입자를 a축 방향으로 성장시켜 큰 결정립을 가진 다결정재료를 사용하고 있으나, c면이 매우 취약하기 때문에 가공서이 나쁘다. 따라서 이와같은 단점을 개선하기 위하여 기계적 강도를 높일 수 있는 가공공정 및 합금설계에 대한 연구가 활발히 진행되고 있다. 측히 열간 압출법으로 제조된 열전재료는 결정립의 미세화와 높은 이방성으로 성능지수와 기계적 강도를 향상시킬 수 있다는 연구결과가 보고되고 있다 또한 Schultz드의 연구결과에 의하면 $Bi_2Te_3$ 계 열전재료는 소성변형에 의하여 발생한 점결함에 의하여 캐리어 농도가 변화되며 이로 인하여 재료의 전기적 성질이 결정된다고 하였다. 따라서 상당히 큰 소성가공량과 열전측성과의 관계를 규명하는 것은 매우 중요하다. 이에 본 연구에서는 압출변수 중 소성가공량에 중요한 변수로 작요아는 압출비를 변화시켜 최적의 열간 소성가공량을 검토하고, 이에 따른 열전측성과 압출비와의 상관관계에 대하여 연구하는 것을 목적으로 하였다. 연구에 사용된 N형의 조성은$Bi_2Te_{2.75}Se_{0.15}$로서 순도 99.99를 사용하였고, dopant로 0.1wt%의 $SbI_3$를 사용하였다. $Bi_2Te_{2.75}Se_{0.15}$ 분말은 가스분사법(Gas atomization Process)를 이용하여, 용탕제조시 아르곤가스로 산화를 방지하였고, 냉매로는 질소가스를 이용하였다. 제조된 분말을 기ㅖ적 분급법을 이용하여 분급하였고, 냉매로는 질소가스를 이용하였다. 제조된 분말을 기계적 분급ㅂ법을 이용하여 분급하였고, 압출에 이용된 분말은 250$\mu\textrm{m}$이하의 크기를 사용하였다. 또한 분말제조과정 중 형성되는 표면산화층을 제거하기 위하여 36$0^{\circ}C$에서 4시간동안 수소 환원처리를 행하였다. 제조된 분말은 열간 압출을 위하여 Aㅣcan에 넣고 냉간성형체를 만들고, 진공처리를 한 후 밀봉하여 탈가스처리를 하였다. 압출다이는 압출비가 각각 28:1과 16:1인 평다이(9$0^{\circ}C$)를 사용하여 각각 내경이 9, 12cm이고, 길이가 50, 30cm인 압출재를 제조하였다. 열간압출한 후의 미세조직을 광학현미경으로 압출방향에 평행한 방향과 수직방향으로 관찰하였고, 열간 압출재 이방성을 검토하기 위하여 X선 회절분석을 실실하여 결정방위를 확인하였다. 전기 비저항 및 Seebeck 계수 측정을 위하여 각각 2$\times$2$\times$10$mm^3$ 그리고 5$\times$5$\times$10$mm^3$ 크기의 시편을 준비하였다.준비하였다.

  • PDF

Fabrication of Organic-Inorganic Nanocomposite Blade for Dicing Semiconductor Wafer (반도체 웨이퍼 다이싱용 나노 복합재료 블레이드의 제작)

  • Jang, Kyung-Soon;Kim, Tae-Woo;Min, Kyung-Yeol;Lee, Jeong-Ick;Lee, Kee-Sung
    • Composites Research
    • /
    • v.20 no.5
    • /
    • pp.49-55
    • /
    • 2007
  • Nanocomposite blade for dicing semiconductor wafer is investigated for micro/nano-device and micro/nano-fabrication. While metal blade has been used for dicing of silicon wafer, polymer composite blades are used for machining of quartz wafer in semiconductor and cellular phone industry in these days. Organic-inorganic material selection is important to provide the blade with machinability, electrical conductivity, strength, ductility and wear resistance. Maintaining constant thickness with micro-dimension during shaping is one of the important technologies fer machining micro/nano fabrication. In this study the fabrication of blade by wet processing of mixing conducting nano ceramic powder, abrasive powder phenol resin and polyimide has been investigated using an experimental approach in which the thickness differential as the primary design criterion. The effect of drying conduction and post pressure are investigated. As a result wet processing techniques reveal that reliable results are achievable with improved dimension tolerance.

Improvement of Interfacial Adhesion for Surface treated Rice Husk Flour-Filled Polypropylene Bio-Composites (표면처리에 의한 왕겨분말-폴리프로필렌 바이오복합재의 계면 접착력 향상)

  • Lee, Byoung-Ho;Kim, Hee-Soo;Choi, Seung-Woo;Kim, Hyun-Joong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.34 no.3
    • /
    • pp.38-45
    • /
    • 2006
  • The main objective of this study is the improvement of the interfacial adhesion of RHF-polypropylene (PP) bio-composites through NaOH and acetic acid treated RHF. After manufacturing of untreated and NaOH and acetic acid treated RHF filled PP bio-composites, the effect on interfacial adhesion of bio-composites was investigated. Tensile strength of the bio-composites made from treated RHF with NaOH and acetic acid was higher than that of the untreated bio-composites. The RHF surface before and after NaOH and acetic acid treatment was clearly confirmed by scanning electron microscopy (SEM) micrograph. It was found that both treatments result in a removal of impurity materials of RHF surface by SEM micrographs. The chemical structures of untreated and NaOH and acetic acid treated RHF were confirmed by fourier transform infrared (FTIR). The crystallization structure and crystallinity of non-treated, NaOH and acetic acid treated RHF were investigated by wide-angle X-ray scattering (WAXS).

The Experimental Study on the Heat Hydration Properties of Concrete According to Binder Conditions (결합재 조건에 따른 콘크리트의 수화발열 특성에 관한 연구)

  • Choi, Sung-Woo;Jo, Hyun-Tae;Ryu, Deuk-Hyun
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.6 s.96
    • /
    • pp.769-776
    • /
    • 2006
  • Recently, owing to the development of industry and the improvement of building techniques, concrete structures are becoming larger and higher. In hardening of these large connote structures, the heat of hydration gives rise to considerable thermal stress depending on the size and environmental condition of concrete, which might cause thermal cracking. Especially, the crack may cause severe damage to the safety and the durability of concrete structure. This study investigates the thermal properties of concrete according to several binder conditions, such as OPC, Belite rich cement(BRC), slag cement(SC), blast furnace slag(B) added cement fly ash(F) added cement and blast-furnace-slag and fly ash added cement. As a result of this study, the properly of concrete is most better BRC than others, and fly ash(25%) added cement and BFS(35%)-fly ash(15%) added cement gets superior effect in the control of heat hydration. But synthetically considered properties of concrete, workablity, strength heat hydration, etc, it is more effective to use mineral admixture. Especially, to be used Blast Furnace slag is more effective.

The Effect of Blaine and SO3 Contents of OPC on Shotcrete Binder with Calcium Aluminate Accelerator (OPC의 분말도 및 SO3 함량이 시멘트 광물계 급결제를 사용한 숏크리트 결합재 물성에 미치는 영향)

  • Kang, Bong-Hee;Kim, Gyu-Yong;Choi, Jae-Won;Koo, Kyung-Mo;Hwang, Bong-Choon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.2
    • /
    • pp.78-85
    • /
    • 2020
  • Shotcrete concrete is generally used in the form of ready-mixed concrete products using type I ordinary portland cement(hereinafter referred to as OPC) and about 5% of accelerator mixed separately in the field. In this study, we tested the effect of OPC fineness and SO3 content on a penetration resistance, compressive strength of binder for shotcrete using calcium aluminate type accerlerator. And we analysed hydrates and pore structure effects on mortar performance. In the future, it is expected to be useful for manufacturing optimized OPC as a binder for shotcrete.

SiC Synthesis by Using Sludged Si Power (폐슬러지 Si 분말을 이용한 SiC 제조)

  • 최미령;김영철;장영철
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.10 no.3
    • /
    • pp.67-71
    • /
    • 2003
  • Sawing silicon ingot with abrasive slurry generates sludge that includes abrasive powders, cutting oil, and silicon powders. The abrasive powders and cutting oil are being separated and reused. Mixing the remained stodged silicon powders with carbon powders and subsequent heat-treatment are conducted to produce silicon carbide. The size of SiC whiskers and powders was smaller than the conventionally grown silicon carbide whiskers that were synthesized by adding micron-size metal impurities. Impurity related mechanism is attributed to the formation of the silicon carbide whiskers, as metal impurities are contained in the stodged silicon powders.

  • PDF

Development of Green Cement Type Grouting Materials with High Toughness and Non-Shrinkage Including Powder of Waste Tire and Resin (분말 폐타이어와 분말 수지를 함유한 환경친화적 고인성 시멘트계 무수축 그라우트재의 개발)

  • Park, Seok-Kyun
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.5
    • /
    • pp.623-630
    • /
    • 2007
  • Grouting materials are used for the unification of superstructural and substructural body like bridge seat (shoe) or machinery pedestal and e.t.c by filling their intercalary voids. Accordingly, grouting materials have been developed and used mainly with products of high strength because those materials are constructed specially in a part receiving large or impact load. In this situation, the structural body constructed by grouting materials with high stiffness-centered (caused by high strength) products is apt to cause brittle failure when receiving over a limit stress and to cause cracks according to cumulative fatigue by continuous and cyclic load. In addition, grouting materials are apt to cause cracks by using too much rapid hardening agents that give rise to high heat of hydration to maintain high strength at early age. In this study, to overcome these problems, cement type grouting materials including powder of waste tire and resin as elastic materials which aim to be more stable construction and to be improvement of mother-body's unification are developed and endowed with properties of high toughness and high durability add to existing properties of high flowability, non-shrinkage and high strength. Besides, this study contribute to of for green construction materials for being possible recycling industrial waste like waste tire and flyash. On the whole, seven type mixing conditions are tested and investigated to choose the best mixing condition.