• Title/Summary/Keyword: 분류 회귀 나무

Search Result 72, Processing Time 0.043 seconds

Interesting Node Finding Criteria for Regression Trees (회귀의사결정나무에서의 관심노드 찾는 분류 기준법)

  • 이영섭
    • The Korean Journal of Applied Statistics
    • /
    • v.16 no.1
    • /
    • pp.45-53
    • /
    • 2003
  • One of decision tree method is regression trees which are used to predict a continuous response. The general splitting criteria in tree growing are based on a compromise in the impurity between the left and the right child node. By picking or the more interesting subsets and ignoring the other, the proposed new splitting criteria in this paper do not split based on a compromise of child nodes anymore. The tree structure by the new criteria might be unbalanced but plausible. It can find a interesting subset as early as possible and express it by a simple clause. As a result, it is very interpretable by sacrificing a little bit of accuracy.

데이터마이닝을 위한 혼합 데이터베이스에서의 속성선택

  • Cha, Un-Ok;Heo, Mun-Yeol
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2003.05a
    • /
    • pp.103-108
    • /
    • 2003
  • 데이터마이닝을 위한 대용량 데이터베이스를 축소시키는 방법 중에 속성선택 방법이 많이 사용되고 있다. 본 논문에서는 세 가지 속성선택 방법을 사용하여 조건속성 수를 60%이상 축소시켜 결정나무와 로지스틱 회귀모형에 적용시켜보고 이들의 효율을 비교해 본다. 세 가지 속성선택 방법은 MDI, 정보획득, ReliefF 방법이다. 결정나무 방법은 QUEST, CART, C4.5를 사용하였다. 속성선택 방법들의 분류 정확성은 UCI 데이터베이스에 주어진 Credit 승인 데이터베이스와 German Credit 데이터베이스를 사용하여 10층-교차확인 방법으로 평가하였다.

  • PDF

Comparative Analysis of Predictors of Depression for Residents in a Metropolitan City using Logistic Regression and Decision Making Tree (로지스틱 회귀분석과 의사결정나무 분석을 이용한 일 대도시 주민의 우울 예측요인 비교 연구)

  • Kim, Soo-Jin;Kim, Bo-Young
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.12
    • /
    • pp.829-839
    • /
    • 2013
  • This study is a descriptive research study with the purpose of predicting and comparing factors of depression affecting residents in a metropolitan city by using logistic regression analysis and decision-making tree analysis. The subjects for the study were 462 residents ($20{\leq}aged{\angle}65$) in a metropolitan city. This study collected data between October 7, 2011 and October 21, 2011 and analyzed them with frequency analysis, percentage, the mean and standard deviation, ${\chi}^2$-test, t-test, logistic regression analysis, roc curve, and a decision-making tree by using SPSS 18.0 program. The common predicting variables of depression in community residents were social dysfunction, perceived physical symptom, and family support. The specialty and sensitivity of logistic regression explained 93.8% and 42.5%. The receiver operating characteristic (roc) curve was used to determine an optimal model. The AUC (area under the curve) was .84. Roc curve was found to be statistically significant (p=<.001). The specialty and sensitivity of decision-making tree analysis were 98.3% and 20.8% respectively. As for the whole classification accuracy, the logistic regression explained 82.0% and the decision making tree analysis explained 80.5%. From the results of this study, it is believed that the sensitivity, the classification accuracy, and the logistics regression analysis as shown in a higher degree may be useful materials to establish a depression prediction model for the community residents.

통계적 분류방법을 이용한 문화재 정보 분석

  • Kang, Min-Gu;Sung, Su-Jin;Lee, Jin-Young;Na, Jong-Hwa
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2009.05a
    • /
    • pp.120-125
    • /
    • 2009
  • 본 논문에서는 통계적 분류방법을 이용하여 문화재 자료의 분석을 수행하였다. 분류방법으로는 선형판별분석, 로지스틱회귀분석, 의사결정나무분석, 신경망분석, SVM분석을 사용하였다. 각각의 분류방법에 대한 개념 및 이론에 대해 간략히 소개하고, 실제자료 분석에서는 "지역별 문화재 통계분석 및 모형개발 연구 1차(2008)"에 사용된 자료 중 익산시 자료를 근거로 매장문화재에 대한 분류방법별 적합모형을 구축하였다. 구축된 모형과 모의실험의 결과를 통해 각각의 적합모형에 대한 비교를 수행하여 모형의 성능을 비교하였다. 분석에 사용된 도구로는 최근 가장 관심을 갖는 R-project를 사용하였다.

  • PDF

Study on Detection Technique for Cochlodinium polykrikoides Red tide using Logistic Regression Model and Decision Tree Model (로지스틱 회귀모형과 의사결정나무 모형을 이용한 Cochlodinium polykrikoides 적조 탐지 기법 연구)

  • Bak, Su-Ho;Kim, Heung-Min;Kim, Bum-Kyu;Hwang, Do-Hyun;Unuzaya, Enkhjargal;Yoon, Hong-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.4
    • /
    • pp.777-786
    • /
    • 2018
  • This study propose a new method to detect Cochlodinium polykrikoides on satellite images using logistic regression and decision tree. We used spectral profiles(918) extracted from red tide, clear water and turbid water as training data. The 70% of the entire data set was extracted and used for model training, and the classification accuracy of the model was evaluated by using the remaining 30%. As a result of the accuracy evaluation, the logistic regression model showed about 97% classification accuracy, and the decision tree model showed about 86% classification accuracy.

A Combined Multiple Regression Trees Predictor for Screening Large Chemical Databases (대용량 화학 데이터 베이스를 선별하기위한 결합다중회귀나무 예측치)

  • 임용빈;이소영;정종희
    • The Korean Journal of Applied Statistics
    • /
    • v.14 no.1
    • /
    • pp.91-101
    • /
    • 2001
  • It has been shown that the multiple trees predictors are more accurate in reducing test set error than a single tree predictor. There are two ways of generating multiple trees. One is to generate modified training sets by resampling the original training set, and then construct trees. It is known that arcing algorithm is efficient. The other is to perturb randomly the working split at each node from a list of best splits, which is expected to generate reasonably good trees for the original training set. We propose a new combined multiple regression trees predictor which uses the latter multiple regression tree predictor as a predictor based on a modified training set at each stage of arcing. The efficiency of those prediction methods are compared by applying to high throughput screening of chemical compounds for biological effects.

  • PDF

Conservation Status of Rare and Endangered Plant Species in T$\v{o}$kyusan National Park (덕유산 국립공원내 회귀 및 멸종위기식물의 보전실태)

  • Yim, Kyong-Bin;Kim, Yong-Shik;Chun, Seung-Hoon;Kim, Sun-Hee;Kim, Whi
    • Korean Journal of Environment and Ecology
    • /
    • v.7 no.2
    • /
    • pp.112-117
    • /
    • 1994
  • The present conservation status on the rare and endangered plants in Tokyusan National Park were surveyed and re-evaluated by the new criteria which prepared by I.U.C.N. The species such as Lonicera vidalii, Clematis chiisanensis, Cypripedium macranthum and Allium taquetii were grouped as Critical, Eranthis stellata, Abies koreana, Taxus cuspidata, Tricyrtis dilatata, Paeonia japonaca, Stewartia koreana, Rhododendron tschnoskii, Buplerum euphorbioides, Lilium cernum and Oreorchis patens were grouped as Endangered, Adonis amurenis and Disporum ovale were grouped as Vulnerable. The above mentioned species were mainly located at the vicinity of mountain trails and projected developing sites. The potentials for the habitat destructions, mainly, due to human activities are expected to be serious in the future unless the proper management plans prepared for the specific plants and the specific habitats.

  • PDF

실시간 CRM을 위한 분류 기법과 연관성 규칙의 통합적 활용;신용카드 고객 이탈 예측에 활용

  • Lee, Ji-Yeong;Kim, Jong-U
    • 한국경영정보학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.135-140
    • /
    • 2007
  • 이탈 고객 예측은 데이터 마이닝에서 다루는 주요한 문제 중에 하나이다. 이탈 고객 예측은 일종의 분류(classification) 문제로 의사결정나무추론, 로지스틱 회귀분석, 인공신경망 등의 기법이 많이 활용되어왔다. 일반적으로 이탈 고객 예측을 위한 모델은 고객의 인구통계학적 정보와 계약이나 거래 정보를 입력변수로 하여 이탈 여부를 목표변수로 보는 형태로 분류 모델을 생성하게 된다. 본 연구에서는 고객과의 지속적인 접촉으로 발생되는 추가적인 사건 정보를 활용하여 연관성 규칙을 생성하고 이 결과를 기존의 방식으로 생성된 분류 모델과 결합하는 이탈 고객 예측 방법을 제시한다. 제시한 방법의 유용성을 확인하기 위해서 특정 국내 신용카드사의 실제 데이터를 활용하여 실험을 수행하였다. 실험 결과 제시된 방법이 기존의 전통적인 분류 모델에 비해서 향상된 성능을 보이는 것을 확인할 수 있었다. 제시된 예측 방법의 장점은 기존의 이탈 예측을 위한 입력 변수들 이외에 고객과 회사간의 접촉을 통해서 생성된 동적 정보들을 통합적으로 활용하여 예측 정확도를 높이고 실시간으로 이탈 확률을 갱신할 수 있다는 점이다.

  • PDF

An Analysis of Choice Behavior for Tour Type of Commercial Vehicle using Decision Tree (의사결정나무를 이용한 화물자동차 투어유형 선택행태 분석)

  • Kim, Han-Su;Park, Dong-Ju;Kim, Chan-Seong;Choe, Chang-Ho;Kim, Gyeong-Su
    • Journal of Korean Society of Transportation
    • /
    • v.28 no.6
    • /
    • pp.43-54
    • /
    • 2010
  • In recent years there have been studies on tour based approaches for freight travel demand modelling. The purpose of this paper is to analyze tour type choice behavior of commercial vehicles which are divided into round trips and chained tours. The methods of the study are based on the decision tree and the logit model. The results indicates that the explanation variables for classifying tour types of commercial vehicles are loading factor, average goods quantity, and total goods quantity. The results of the decision tree method are similar to those of logit model. In addition, the explanation variables for tour type classification of small trucks are not different from those for medium trucks', implying that the most important factor on the vehicle tour planning is how to load goods such as shipment size and total quantity.

Evaluations of predicted models fitted for data mining - comparisons of classification accuracy and training time for 4 algorithms (데이터마이닝기법상에서 적합된 예측모형의 평가 -4개분류예측모형의 오분류율 및 훈련시간 비교평가 중심으로)

  • Lee, Sang-Bock
    • Journal of the Korean Data and Information Science Society
    • /
    • v.12 no.2
    • /
    • pp.113-124
    • /
    • 2001
  • CHAID, logistic regression, bagging trees, and bagging trees are compared on SAS artificial data set as HMEQ in terms of classification accuracy and training time. In error rates, bagging trees is at the top, although its run time is slower than those of others. The run time of logistic regression is best among given models, but there is no uniformly efficient model satisfied in both criteria.

  • PDF