• 제목/요약/키워드: 분류방법

검색결과 11,129건 처리시간 0.038초

비음수 행렬 분해와 동적 분류체계를 사용한 이메일 분류 (Email Classification using Dynamic Category Hierarchy and Non-negative Matrix Factorization)

  • 박선;안동언
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2009년도 제21회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.35-39
    • /
    • 2009
  • 이메일의 사용증가로 수신 메일을 효율적이면서 정확하게 분류할 필요성이 점차 증가하고 있다. 현재의 이메일 분류는 베이지안, 규칙 기반 등을 이용하여 스팸 메일을 필터링하기 위한 이원 분류가 주를 이루고 있다. 클러스터링을 이용한 다원 분류 방법은 분류의 정확도가 떨어지는 단점이 있다. 본 논문에서는 비음수 행렬 분해(NMF, Non-negative Matrix Factrazation)를 기반으로 한 자동 분류 주제 생성 방법과 동적 분류 체계(DCH, Dynamic Category Hierachy) 방법을 결합한 새로운 이메일 분류 방법을 제안한다. 이 방법은 수신되는 이메일을 자동으로 분류하여 대량의 메일을 효율적으로 관리할 수 있으며, 분류 결과 사용자의 요구사항을 만족하지 못하면 메일을 동적으로 재분류 하여 분류 정확률을 높일 수 있다.

  • PDF

OVA SVM의 동적 결합을 이용한 효과적인 지문분류 (Effective Fingerprint Classification with Dynamic Integration of OVA SVMs)

  • 홍진혁;조성배
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2005년도 가을 학술발표논문집 Vol.32 No.2 (2)
    • /
    • pp.883-885
    • /
    • 2005
  • 지지 벡터 기계(Support Vector Machine: SVM)를 이용한 다중부류 분류기법이 최근 활발히 연구되고 있다. SVM은 이진분류기이기 때문에 다중부류 분류를 위해서 다수의 분류기를 구성하고 이들을 효과적으로 결합하는 방법이 필요하다. 본 논문에서는 기존의 정적인 다중분류기 결합 방법과는 달리 포섭구조의 분류모델을 확률에 따라 동적으로 구성하는 방법을 제안한다. 확률적 분류기인 나이브 베이즈 분류기(NB)를 이용하여 입력된 샘플의 각 클래스에 대한 확률을 계산하고, OVA (One-Vs-All) 전략으로 구축된 다중의 SVM을 획득된 확률에 따라 포섭구조로 구성한다. 제안하는 방법은 OVA SVM에서 발생하는 중의적인 상황을 효과적으로 처리하여 고성능의 분류를 수행한다. 본 논문에서는 지문분류 문제에서 대표적인 NIST-4 지문 데이터베이스를 대상으로 제안하는 방법을 적용하여 $1.8\%$의 거부율에서 $90.8\%$의 분류율을 획득하였으며, 기존의 결합 방법인 다수결 투표(Majority vote), 승자독식(Winner-takes-all), 행동지식공간 (Behavior knowledge space), 결정템플릿(Decision template) 등보다 높은 성능을 확인하였다.

  • PDF

SDN환경에서 머신러닝을 이용한 트래픽 분류방법 (Traffic classification using machine learning in SDN)

  • 임환희;김동현;김경태;윤희용
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2018년도 제57차 동계학술대회논문집 26권1호
    • /
    • pp.93-94
    • /
    • 2018
  • Software Defined Networking(SDN)은 데이터 부와 컨트롤 부를 나눠 관리하는 혁신적인 방식이다. SDN 환경에서가 아닌 기존의 IP 네트워크에서의 트래픽 분류는 많은 연구가 진행되어 왔다. 트래픽 분류 방법에는 Port 번호를 이용한 트래픽 분류 방법, Payload를 이용한 트래픽 분류 방법, Machine Learning을 이용한 트래픽 분류 방법 등이 있다. 본 논문에서는 Port 번호, Payload, Machine Learning을 이용한 트래픽 분류 방법들을 소개 및 장단점을 설명하고 SDN 환경에서 Machine Learning을 이용한 좀 더 정확한 트래픽 분류 방법을 제안한다.

  • PDF

RMR 분류방법 및 수정 방법의 고찰 (A Study on Rock Mass Rating system(RMR) and Modified Method)

  • 허종석
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2003년도 암반역학위원회 학술세미나 논문집
    • /
    • pp.51-64
    • /
    • 2003
  • Bieniawski에 의해 개발된 RMR은 암석강도 및 불연속면, 지하수 등의 6개 인자에 따라 분류되어, 이들을 합산하여 결정된다. RMR 분류법은 각 요소들에 대한 평가가 비교적 쉽고, 다양한 응용을 거쳐 여러 분야에 적용되어 국내에서도 가장 널리 사용하고 있는 암반분류 방법 중의 하나이다. RMR 분류결과는 터널의 유지시간, 최대 무지보폭의 예측, 지보량 산정, 암반의 물리적 특성값 예측 등에 적용될 수 있다. 또한 RMR 분류법을 사면안정, 댐 기초, 심부 광산 등에 적용하거나, RMR 분류법의 미비한 부분을 보완하기 위한 여러 가지 수정방법이 제시되었다.

  • PDF

보로노이 공간분류를 활용한 원격 영상 패턴분류 시스템 (Pattern Classification System for Remote Sensing Data using Voronoi Diagram)

  • 백주현;김홍기
    • 정보처리학회논문지B
    • /
    • 제8B권4호
    • /
    • pp.335-342
    • /
    • 2001
  • 본 논문은 보로노이 공간분류를 활용하여 원격탐사 영상인식을 위한 다층 신경망 분류기를제안한다. 제안된 다층 신경망 분류기는 보로노이 다각형 영역으로 클래스를 구분하며, 초평면 방정식의 계수를 오류 역전과 학습 초기의 연결 강도, 임계치 그리고 은닉층의 노드 수로 결정한다. 제안된 방법은 오류역전과 학습 알고리즘에서 임의로 정해주던 초기 정보를 사전 분석에 의해 공학적으로 결정함으로써 느린 수렴 속도와 학습실패 등의 단점을 피할 수 있는 장점이 있다. 보로노이 다이어그램에 대한 경계선의 초평면 방정식은 훈련집합의 클래스별 평균값을 구하여 Mathematica 패키지로 계산하였다. 제안된 다층 신경망에 의한 영상분류기의 인식능력을 평가하기 위하여 원격탐사 영상인식에서 자주 활용되는 최소거리 분류 방법과 최대우도 분류 방법으로 처리해서 비교한 결과, 최소거리 분류 방법은 실험화상에 대해 81.4%, 최대우도 부류기에 의한 분류는 87.8%, 제안한 방법은 92.2% 정확성을 가진 분류결과를 나타냈다.

  • PDF

비음수 행렬 분해와 동적 분류 체계를 사용한 자동 이메일 다원 분류 (Automatic Email Multi-category Classification Using Dynamic Category Hierarchy and Non-negative Matrix Factorization)

  • 박선;안동언
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제37권5호
    • /
    • pp.378-385
    • /
    • 2010
  • 이메일 사용의 증가로 수신 메일을 효율적이면서 정확하게 분류할 필요성이 점차 늘고 있다. 현재의 이메일 분류는 SVM, 베이지안 분류자, 규칙 기반 분류자 등을 이용하여 스팸 메일을 필터링하기 위한 이원 분류가 주를 이루고 있다. 그러나 이러한 지도 학습 방법들은 적합한 이메일을 인식하기 위하여서 사용자가 규칙이나 색인어 목록을 작성해야 한다. 비지도 학습 방법으로 군집을 이용한 다원 분류 방법은 메일의 분류 주제를 설정해주어야 한다. 본 논문에서는 비음수 행렬 분해(NMF, Non-negative Matrix Factorization)를 기반으로 한 자동 분류 주제 생성 방법과, 동적 분류 체계(DCH, Dynamic Category Hierarchy) 방법을 이용한 분류 주제 내에 이메일을 재구성하는 방법을 결합한 새로운 이메일 다원 분류 방법을 제안한다. 이 방법은 수신되는 이메일을 자동으로 다원 분류하여 대량의 메일을 효율적으로 관리할 수 있으며, 사용자가 분류 결과를 만족하지 못하면 분류 주제 내의 이메일을 동적으로 재구성하여 분류의 정확률을 높인다.

TTF와 ITTF의 차를 이용한 자동 문서 분류 (Automatic Text Categorization using difference TTF and ITTF)

  • 이상철;하진영
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2001년도 가을 학술발표논문집 Vol.28 No.2 (2)
    • /
    • pp.133-135
    • /
    • 2001
  • 본 논문에서는 일반적으로 Word Based Matching 방법에서 많이 쓰이는 TFIDF 방법대신에 TTF(Total Term Frequency)와 ITTF(Inverse Total Term Frequecy) 에 가중치를 주어 문서분류의 정확도를 높이는 방법을 제안하고자 한다. TFIDF방법에서 IDF는 역문헌빈도를 나타내는데 Term에 대한 빈도비율의 공정성이 떨어져 문서 분류의 정확도에 한계가 있다. 본 논문에서 제시하는 문서 분류방법은 TTF와 ITTF에 각각의 가중치를 준 후에 차연산 이용하여 문서를 분류하는 것이다. 이러한 방법의 특징은 IDF를 사용할 때 보다 각 카테고리에 있는 term, 즉 단어의 중요도에 대한 가중치를 좀 더 공평하게 줌으로써 문서의 분류를 높일 수 있다. 본 논문에서는 조선일보의 카테고리를 사용하였으며 조선일보의 기사를 대상으로 문서 자동 분류 실험을 수행하였다. 실험 결과 TFIDF보다 본 논문에서 제안한 방법이 문서 분류에 높은 정확도를 나타냄을 보였다.

  • PDF

분류 앙상블 모형에서 Lasso-bagging과 WAVE-bagging 가지치기 방법의 성능비교 (Comparison of ensemble pruning methods using Lasso-bagging and WAVE-bagging)

  • 곽승우;김현중
    • Journal of the Korean Data and Information Science Society
    • /
    • 제25권6호
    • /
    • pp.1371-1383
    • /
    • 2014
  • 분류 앙상블 모형이란 여러 분류기들의 예측 결과를 통합하여 더욱 정교한 예측성능을 가진 분류기를 만들기 위한 융합방법론이라 할 수 있다. 분류 앙상블을 구성하는 분류기들이 높은 예측 정확도를 가지고 있으면서 서로 상이한 모형으로 이루어져 있을 때 분류 앙상블 모형의 정확도가 높다고 알려져 있다. 하지만, 실제 분류 앙상블 모형에는 예측 정확도가 그다지 높지 않으며 서로 유사한 분류기도 포함되어 있기 마련이다. 따라서 분류 앙상블 모형을 구성하고 있는 여러 분류기들 중에서 서로 상이하면서도 정확도가 높은 것만을 선택하여 앙상블 모형을 구성해 보는 가지치기 방법을 생각할 수 있다. 본 연구에서는 Lasso 회귀분석 방법을 이용하여 분류기 중에 일부를 선택하여 모형을 만드는 방법과 가중 투표 앙상블 방법론의 하나인 WAVE-bagging을 이용하여 분류기 중 일부를 선택하는 앙상블 가지치기 방법을 비교하였다. 26개 자료에 대해 실험을 한 결과 WAVE-bagging 방법을 이용한 분류 앙상블 가지치기 방법이 Lasso-bagging을 이용한 방법보다 더 우수함을 보였다.

고등학교 경제지리 교육내용의 선정과 조직 (A Study of Subject Contents in High-School Economic Geography)

  • 조성욱
    • 대한지리학회지
    • /
    • 제35권3호
    • /
    • pp.455-474
    • /
    • 2000
  • 제 7 차 교육과정에서 경제지리 과목이 심화 선택 과목으로 새롭게 설정되었다. 그러나 제 6차 교육과정 한국지리 과목의 경제지리 교육내용을 단순 확대.심화시켜 구성하였기 때문에, 그 동안의 비판과 문제점을 해결하지 못하고 있다. 지리교육에서 경제 지리교육내용의 선정 및 조직 바법은 산업별 분류방법, 주제 중심방법, 경제과정 중심방법으로 분류할 수 있는데, 기존은 교육과정은 산업별 분류방법을 근간으로 하고 있다. 본 연구에서는, 공급자의입장에서 나열적으로 교육내용을 선정.조직하고 있는 기존 방법의 문제점을 개선하고, 실생활에서 학습의 유용성을 확인시켜 학습자의 관심과 흥미를 갖게 하며, 다양한 형태의 교수-학습 활동이 가능하도록 하면서, 심화 선택 과목의 특성을 살릴 수 있는 경제 지리 과목의 교육내용 선정 및 조직 대안으로 지역문제 중심방법을 제안한다.

  • PDF

Apriori-Genetic 알고리즘을 이용한 베이지안 자동 문서 분류 (Bayesian Automatic Document Categorization Using Apriori-Genetic Algorithm)

  • 고수정;이정현
    • 정보처리학회논문지B
    • /
    • 제8B권3호
    • /
    • pp.251-260
    • /
    • 2001
  • 기존의 베이지안 문서 분류는 문서의 특징 표현에 있어서 단어간의 의미를 정확하게 반영하지 못하는 문제점이 있다. 이러한 문제점을 해결하기 위해, 본 논문에서는 Apriori-Genetic 알고리즘을 이용한 베이지안 문서 분류 방법을 제안한다. Apriori 알고리즘은 단어간의 의미를 반영한 연관 단어의 형태로 문서의 특징을 추출하며 추출된 연관 단어로 연관 단어 지식베이스를 구축한다. Aprrori 알고리즘만으로 연관 단어 지식베이스를 구축할 경우, 지식베이스 안에 부적당한 연관 단어가 포함된다. 따라서 문서 분류의 정확도가 낮아지는 단점이 있다. 이러한 단점을 보완하기 위해, Genetic 알고리즘을 이용하여 연관 단어 지식베이스를 최적화하는 방법을 사용한다. 베이지안 확률을 이용하는 분류자는 최적화된 연관 단어 지식베이스를 기반으로 문서를 클래스별로 분류한다. Apriori-Genetic 알고리즘을 이용한 베이지안 문서 분류의 성능을 평가하기 위해, Apriori 알고리즘을 이용한 베이지안 문서 분류 방법, 역문헌빈도를 사용한 베이지안 문서 분류 방법, 기존의 단순 베이지안 분류 방법과 비교하였다.

  • PDF