이메일의 사용증가로 수신 메일을 효율적이면서 정확하게 분류할 필요성이 점차 증가하고 있다. 현재의 이메일 분류는 베이지안, 규칙 기반 등을 이용하여 스팸 메일을 필터링하기 위한 이원 분류가 주를 이루고 있다. 클러스터링을 이용한 다원 분류 방법은 분류의 정확도가 떨어지는 단점이 있다. 본 논문에서는 비음수 행렬 분해(NMF, Non-negative Matrix Factrazation)를 기반으로 한 자동 분류 주제 생성 방법과 동적 분류 체계(DCH, Dynamic Category Hierachy) 방법을 결합한 새로운 이메일 분류 방법을 제안한다. 이 방법은 수신되는 이메일을 자동으로 분류하여 대량의 메일을 효율적으로 관리할 수 있으며, 분류 결과 사용자의 요구사항을 만족하지 못하면 메일을 동적으로 재분류 하여 분류 정확률을 높일 수 있다.
지지 벡터 기계(Support Vector Machine: SVM)를 이용한 다중부류 분류기법이 최근 활발히 연구되고 있다. SVM은 이진분류기이기 때문에 다중부류 분류를 위해서 다수의 분류기를 구성하고 이들을 효과적으로 결합하는 방법이 필요하다. 본 논문에서는 기존의 정적인 다중분류기 결합 방법과는 달리 포섭구조의 분류모델을 확률에 따라 동적으로 구성하는 방법을 제안한다. 확률적 분류기인 나이브 베이즈 분류기(NB)를 이용하여 입력된 샘플의 각 클래스에 대한 확률을 계산하고, OVA (One-Vs-All) 전략으로 구축된 다중의 SVM을 획득된 확률에 따라 포섭구조로 구성한다. 제안하는 방법은 OVA SVM에서 발생하는 중의적인 상황을 효과적으로 처리하여 고성능의 분류를 수행한다. 본 논문에서는 지문분류 문제에서 대표적인 NIST-4 지문 데이터베이스를 대상으로 제안하는 방법을 적용하여 $1.8\%$의 거부율에서 $90.8\%$의 분류율을 획득하였으며, 기존의 결합 방법인 다수결 투표(Majority vote), 승자독식(Winner-takes-all), 행동지식공간 (Behavior knowledge space), 결정템플릿(Decision template) 등보다 높은 성능을 확인하였다.
Software Defined Networking(SDN)은 데이터 부와 컨트롤 부를 나눠 관리하는 혁신적인 방식이다. SDN 환경에서가 아닌 기존의 IP 네트워크에서의 트래픽 분류는 많은 연구가 진행되어 왔다. 트래픽 분류 방법에는 Port 번호를 이용한 트래픽 분류 방법, Payload를 이용한 트래픽 분류 방법, Machine Learning을 이용한 트래픽 분류 방법 등이 있다. 본 논문에서는 Port 번호, Payload, Machine Learning을 이용한 트래픽 분류 방법들을 소개 및 장단점을 설명하고 SDN 환경에서 Machine Learning을 이용한 좀 더 정확한 트래픽 분류 방법을 제안한다.
Bieniawski에 의해 개발된 RMR은 암석강도 및 불연속면, 지하수 등의 6개 인자에 따라 분류되어, 이들을 합산하여 결정된다. RMR 분류법은 각 요소들에 대한 평가가 비교적 쉽고, 다양한 응용을 거쳐 여러 분야에 적용되어 국내에서도 가장 널리 사용하고 있는 암반분류 방법 중의 하나이다. RMR 분류결과는 터널의 유지시간, 최대 무지보폭의 예측, 지보량 산정, 암반의 물리적 특성값 예측 등에 적용될 수 있다. 또한 RMR 분류법을 사면안정, 댐 기초, 심부 광산 등에 적용하거나, RMR 분류법의 미비한 부분을 보완하기 위한 여러 가지 수정방법이 제시되었다.
본 논문은 보로노이 공간분류를 활용하여 원격탐사 영상인식을 위한 다층 신경망 분류기를제안한다. 제안된 다층 신경망 분류기는 보로노이 다각형 영역으로 클래스를 구분하며, 초평면 방정식의 계수를 오류 역전과 학습 초기의 연결 강도, 임계치 그리고 은닉층의 노드 수로 결정한다. 제안된 방법은 오류역전과 학습 알고리즘에서 임의로 정해주던 초기 정보를 사전 분석에 의해 공학적으로 결정함으로써 느린 수렴 속도와 학습실패 등의 단점을 피할 수 있는 장점이 있다. 보로노이 다이어그램에 대한 경계선의 초평면 방정식은 훈련집합의 클래스별 평균값을 구하여 Mathematica 패키지로 계산하였다. 제안된 다층 신경망에 의한 영상분류기의 인식능력을 평가하기 위하여 원격탐사 영상인식에서 자주 활용되는 최소거리 분류 방법과 최대우도 분류 방법으로 처리해서 비교한 결과, 최소거리 분류 방법은 실험화상에 대해 81.4%, 최대우도 부류기에 의한 분류는 87.8%, 제안한 방법은 92.2% 정확성을 가진 분류결과를 나타냈다.
이메일 사용의 증가로 수신 메일을 효율적이면서 정확하게 분류할 필요성이 점차 늘고 있다. 현재의 이메일 분류는 SVM, 베이지안 분류자, 규칙 기반 분류자 등을 이용하여 스팸 메일을 필터링하기 위한 이원 분류가 주를 이루고 있다. 그러나 이러한 지도 학습 방법들은 적합한 이메일을 인식하기 위하여서 사용자가 규칙이나 색인어 목록을 작성해야 한다. 비지도 학습 방법으로 군집을 이용한 다원 분류 방법은 메일의 분류 주제를 설정해주어야 한다. 본 논문에서는 비음수 행렬 분해(NMF, Non-negative Matrix Factorization)를 기반으로 한 자동 분류 주제 생성 방법과, 동적 분류 체계(DCH, Dynamic Category Hierarchy) 방법을 이용한 분류 주제 내에 이메일을 재구성하는 방법을 결합한 새로운 이메일 다원 분류 방법을 제안한다. 이 방법은 수신되는 이메일을 자동으로 다원 분류하여 대량의 메일을 효율적으로 관리할 수 있으며, 사용자가 분류 결과를 만족하지 못하면 분류 주제 내의 이메일을 동적으로 재구성하여 분류의 정확률을 높인다.
본 논문에서는 일반적으로 Word Based Matching 방법에서 많이 쓰이는 TFIDF 방법대신에 TTF(Total Term Frequency)와 ITTF(Inverse Total Term Frequecy) 에 가중치를 주어 문서분류의 정확도를 높이는 방법을 제안하고자 한다. TFIDF방법에서 IDF는 역문헌빈도를 나타내는데 Term에 대한 빈도비율의 공정성이 떨어져 문서 분류의 정확도에 한계가 있다. 본 논문에서 제시하는 문서 분류방법은 TTF와 ITTF에 각각의 가중치를 준 후에 차연산 이용하여 문서를 분류하는 것이다. 이러한 방법의 특징은 IDF를 사용할 때 보다 각 카테고리에 있는 term, 즉 단어의 중요도에 대한 가중치를 좀 더 공평하게 줌으로써 문서의 분류를 높일 수 있다. 본 논문에서는 조선일보의 카테고리를 사용하였으며 조선일보의 기사를 대상으로 문서 자동 분류 실험을 수행하였다. 실험 결과 TFIDF보다 본 논문에서 제안한 방법이 문서 분류에 높은 정확도를 나타냄을 보였다.
Journal of the Korean Data and Information Science Society
/
제25권6호
/
pp.1371-1383
/
2014
분류 앙상블 모형이란 여러 분류기들의 예측 결과를 통합하여 더욱 정교한 예측성능을 가진 분류기를 만들기 위한 융합방법론이라 할 수 있다. 분류 앙상블을 구성하는 분류기들이 높은 예측 정확도를 가지고 있으면서 서로 상이한 모형으로 이루어져 있을 때 분류 앙상블 모형의 정확도가 높다고 알려져 있다. 하지만, 실제 분류 앙상블 모형에는 예측 정확도가 그다지 높지 않으며 서로 유사한 분류기도 포함되어 있기 마련이다. 따라서 분류 앙상블 모형을 구성하고 있는 여러 분류기들 중에서 서로 상이하면서도 정확도가 높은 것만을 선택하여 앙상블 모형을 구성해 보는 가지치기 방법을 생각할 수 있다. 본 연구에서는 Lasso 회귀분석 방법을 이용하여 분류기 중에 일부를 선택하여 모형을 만드는 방법과 가중 투표 앙상블 방법론의 하나인 WAVE-bagging을 이용하여 분류기 중 일부를 선택하는 앙상블 가지치기 방법을 비교하였다. 26개 자료에 대해 실험을 한 결과 WAVE-bagging 방법을 이용한 분류 앙상블 가지치기 방법이 Lasso-bagging을 이용한 방법보다 더 우수함을 보였다.
제 7 차 교육과정에서 경제지리 과목이 심화 선택 과목으로 새롭게 설정되었다. 그러나 제 6차 교육과정 한국지리 과목의 경제지리 교육내용을 단순 확대.심화시켜 구성하였기 때문에, 그 동안의 비판과 문제점을 해결하지 못하고 있다. 지리교육에서 경제 지리교육내용의 선정 및 조직 바법은 산업별 분류방법, 주제 중심방법, 경제과정 중심방법으로 분류할 수 있는데, 기존은 교육과정은 산업별 분류방법을 근간으로 하고 있다. 본 연구에서는, 공급자의입장에서 나열적으로 교육내용을 선정.조직하고 있는 기존 방법의 문제점을 개선하고, 실생활에서 학습의 유용성을 확인시켜 학습자의 관심과 흥미를 갖게 하며, 다양한 형태의 교수-학습 활동이 가능하도록 하면서, 심화 선택 과목의 특성을 살릴 수 있는 경제 지리 과목의 교육내용 선정 및 조직 대안으로 지역문제 중심방법을 제안한다.
기존의 베이지안 문서 분류는 문서의 특징 표현에 있어서 단어간의 의미를 정확하게 반영하지 못하는 문제점이 있다. 이러한 문제점을 해결하기 위해, 본 논문에서는 Apriori-Genetic 알고리즘을 이용한 베이지안 문서 분류 방법을 제안한다. Apriori 알고리즘은 단어간의 의미를 반영한 연관 단어의 형태로 문서의 특징을 추출하며 추출된 연관 단어로 연관 단어 지식베이스를 구축한다. Aprrori 알고리즘만으로 연관 단어 지식베이스를 구축할 경우, 지식베이스 안에 부적당한 연관 단어가 포함된다. 따라서 문서 분류의 정확도가 낮아지는 단점이 있다. 이러한 단점을 보완하기 위해, Genetic 알고리즘을 이용하여 연관 단어 지식베이스를 최적화하는 방법을 사용한다. 베이지안 확률을 이용하는 분류자는 최적화된 연관 단어 지식베이스를 기반으로 문서를 클래스별로 분류한다. Apriori-Genetic 알고리즘을 이용한 베이지안 문서 분류의 성능을 평가하기 위해, Apriori 알고리즘을 이용한 베이지안 문서 분류 방법, 역문헌빈도를 사용한 베이지안 문서 분류 방법, 기존의 단순 베이지안 분류 방법과 비교하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.