• Title/Summary/Keyword: 분대암

Search Result 13, Processing Time 0.025 seconds

삼척시 도계읍 지역에 분포하는 풍촌층 석회석의 부존 특성

  • 이유진;손길상;박찬근;서경환
    • Proceedings of the Mineralogical Society of Korea Conference
    • /
    • 2002.10a
    • /
    • pp.17-30
    • /
    • 2002
  • 삼척-도계지역 일대에 분포하는 조선누층군의 풍촌층 석회석은 품위 및 암상에따라 상부고품위대와 하부석회암대로 분대가 가능한데, 이는 삼척-태백간을 북북동으로 흐르는 오십천을 경계로 서쪽에 분포하는 풍촌층과 비교할 때 다소간의 암상차이를 보인다. 즉, 풍촌층의 특징중에 하나인 중부백운암대가 본 역 일대에서는 백운암화가 미약하여 비교적 소폭으로 확인되며, 상부백색대 역시, 발달정도가 미약한 특징을 보인다. 시추탐사결과 확인된 삼척-도계지역의 풍촌층 상부고품위대는 일반적으로 상부백색대$(\pm15m)$ - 백운암대$(\pm5m)$ - 암회색대$(\pm50m)$로 구분되는 것으로 나타났다. 각각의 품위는 상부백색대 : CaO $53_4\~55.6\%$, 백운암대 : MgO $3.0\~18.4\%$, 암회색대 : CaO $50.4\~54.2\%$로 나타나 제철용으로의 사용이 가능하나 백운암대에 대한 선별채광이 부분적으로 요망된다. 이들 석회석은 오십천대단층의 수반단층인 수조의 NNE계열 정단층들에 의해 빈번히 단절되어 있으며 일부지역에서는 EW향의 역단층에 의해 규제되기도 한다. 상기 제단층들은 석회암층을 단절시킬 뿐만 아니라 단층각력, 단층점토, 암맥 등의 불순대를 수반하므로 개발에 장애요소가 되고 있다. 상부고품위대 부존표고는 지역에 따라 다소 차이가 있으나 200ML 내외에서 대부분 확인이 가능하며 지표노출 규모는 작은 편이나 $10^{\circ}$이하의 완경사로 화절층 하부에 부존되어 있어 갱도 채광에 적합한 형태를 이루고 있다.

  • PDF

삼척시 도계읍 지역에 분포하는 풍촌층 석회석의 부존 특성

  • 이유진;손길상;박찬근;서경환
    • Proceedings of the KSEEG Conference
    • /
    • 2002.10a
    • /
    • pp.17-30
    • /
    • 2002
  • 삼척-도계지역 일대에 분포하는 조선누층군의 풍촌층 석회석은 품위 및 암상에따라 상부고품위대와 하부석회암대로 분대가 가능한데, 이는 삼척-태백간을 북북동으로 흐르는 오십천을 경계로 서쪽에 분포하는 풍촌층과 비교할 때 다소간의 암상차이를 보인다. 즉, 풍촌층의 특징중에 하나인 중부백운암대가 본 역 일대에서는 백운암화가 미약하여 비교적 소폭으로 확인되며, 상부백색대 역시, 발달정도가 미약한 특징을 보인다. 시추탐사결과 확인된 삼척-도계지역의 풍촌층 상부고품위대는 일반적으로 상부백색대($\pm$15m) - 백운암대($\pm$15m) - 암회색대($\pm$50m)로 구분되는 것으로 나타났다. 각각의 품위는 상부백색대 : CaO 53.4~55.6%, 백운암대 : MgO 3.0~l8.4%, 암회색대 : CaO 50.4~54.2%로 나타나 제철용으로의 사용이 가능하나 백운암대에 대한 선별채광이 부분적으로 요망된다. 이들 석회석은 오십천대단층의 수반단층인 수조의 NNE계열 정단층들에 의해 빈번히 단절되어 있으며 일부지역에서는 EW향의 역단층에 의해 규제되기도 한다. 상기 제단층들은 석회암층을 단절시킬 뿐만아니라 단층각력, 단층점토, 암맥 등의 불순대를 수반하므로 개발에 장애요소가 되고 있다. 상부고품위대 부존표고는 지역에 따라 다소 차이가 있으나 200ML 내외에서 대부분 확인이 가능하며 지표노출 규모는 작은 편이나 $10^{\circ}$이하의 완경사로 화절층 하부에 부존되어 있어 갱도 채광에 적합한 형태를 이루고 있다.

  • PDF

Polymetamorphism of the Odesan Gneiss Complex in the Northeastern area of the Kyonggi Massif, Korea (경기육괴 북동부지역에 분포하는 오대산편마암복합체의 다변성작용)

  • 권용완;김형식;오창환
    • The Journal of the Petrological Society of Korea
    • /
    • v.6 no.3
    • /
    • pp.226-243
    • /
    • 1997
  • The Odesan Gneiss Complex consists of mainly migmatitic gneiss and porphyroblastic gneiss with locally intercated quartzite, amphibolite, marble and leucocratic gneiss. At least two different regional metamorphisms are recognized in the study area. Metamorphic grade of the first metamorphism increases from the K-feldspar-muscovite zone(in which biotite-muscovite-plagioclase-quartz and garnet-biotite-muscovite-K-feldspar-plagioclase-quartz assemblages occur) in the east and southwestern part of the study area to the K-feldspar-garnet zone(in which garnet-biotite-K-feldspar-plagioclase-quartz, biotite-K-feldspar-plagioclase-quartz, garnet-biotite-K-feldspar-plagioclase-sillimanite-spinel-quartz assemblages occur) in the northwestern part. Kyanite is found as inclusions in plagioclase. The second metamorphism is characterised by occurrence of cordierite. The metamorphic grade of 2nd metamorphism decreases radically from the central-western part near Gaeinsan in which cordierite-garnet-sillimanite-biotite-muscovite-quartz, cordierite-garnet-spinel-sillimanite-biotite-muscovite-quartz assemblages representing the garnet-cordierite zone are observed. The garnet-cordierite zone is surrounded by the sillimanite-cordierite zone which shows cordierite-sillimanite-biotite-plagioclase, cordierite-muscovite-biotite-plagioclase and sillimanite-muscovite-biotite-plagioclase assemblages. The peak metamorphic P-T conditions of the first metamorphism calcuted from garnet-biotite-sillimanite-K-feldspar-plagioclase-spinel assemblage are 5.4~7.4 kb and $776-789^{\circ}C$. Real P-T condition of the first metamorphism might be higher than the calcuated P-T condition according to the study based on the phase equilibria. P-T conditions calcuated from the garnet-biotite in plagioclase are 12.5kb and $650^{\circ}C$ which indicate that the P-T path of the first metamorphism had passed a high pressure condition before the peak metamorphic temperature condition. The peak metamorphic P-T conditions of the second metamorphism calcuated from garnet-biotite-cordierite-spinel-quartz assemblage are $680~750^{\circ}C$ at pressures lower than 6 kb. In the Odesan Gneiss Complex, the first metamorphism of medium pressure and high temperature had occurred after the high pressure condition and fast uplift and then the second metamorphism of low pressure condition occurred after sedimentation of the Kuryong Group.

  • PDF

Magmatic evolution of igneous rocks related with the Samrangjin caldera, southeastern Korea (삼랑진 칼데라에 관련된 화성암류의 마그마 진화)

  • 황상구;정창식
    • The Journal of the Petrological Society of Korea
    • /
    • v.7 no.3
    • /
    • pp.161-176
    • /
    • 1998
  • There are exposed Samrangjin Tuff and intracaldera intrusions, of which rhyolitic rocks emplaced as postcollapsed central and ring intrusions within the Samrangjin caldera, and fine-grained granodiorite and biotite granite as regional tectonic intrusions nearby. The Samrangjin Tuff and the rhyolitic rocks are of a single Samrangjin magmatic system. Flow-banded rhyolite among rhyolitic rocks was emplaced in the outer part of the ring intrusions, rhyodacite in the inner part of the eastern ring, and porphyritic dacite and dacite porphyry in the inner part of the northwestern ring. Totally the Samrangjin Tuff and the rhyolitic rocks range from rhyolite to dacite in chemical composition. The Rb-Sr isotopic data of the Samrangjin Tuff and the rhyolitic rocks yield an age of $80.8{\pm}1.5(2{\sigma})$ Ma with the initial $^{87}Sr/^{86}Sr$ ratio of $0.70521{\pm}0.00010(2{\sigma})$. The continuous compositional zonations generally define a large stratified magma system in the postcollapse magma chamber. The Sr isotopic data suggest that the compositional zonations might have resulted from the fractional crystallization of a parental dacitic magma.

  • PDF

Occurrence and Formation Environment of Boron Deposits in Turkey (터키 붕소광상의 부존특성 및 형성환경)

  • Koh, Sang-Mo;Lee, Bum Han;Lee, Gilljae;Cicek, Murat
    • Economic and Environmental Geology
    • /
    • v.47 no.5
    • /
    • pp.541-549
    • /
    • 2014
  • The annual borate production in Turkey is about 3 million tons, which occupies approximately 61 percent of total annual world production. Turkey has five boron deposits including Bigadic, Emet, Kestelek, Kirka, and Sultancayir. At present, Bigadic, Emet, and Kirka deposits are operating. Kirka boron deposit is distributed within volcanoclatic sedimentary group as mainly layered, rarely brecciated and massive types. Major borate is borax associated with colemanite and ulexite. They show a horizontal symmetrical zonation from Na borate (borax) in the center of deposit to Na-Ca borate (ulexite) and Ca-borate (colemanite) in margin. Bigadic boron deposit is known as the largest colemanite deposit in the world. This deposit occurs as two borate bearing horizons in Miocene volcanoclastic sedimentary group. Thickness ranges from several meters to 100 meter with a length of several hundreds meters. Borate ore bodies which are mainly composed of colemanite and ulexite are alternated with claystone, mudstone, tuff and layered limestone as lenticular shape. Sultancayir boron deposit is mainly distributed within gray limestone. Main borate minerals of this deposit are pandermite and ulexite. Pandermite and ulexite occur as colloform aggregate and small veinlet, respectively. Turkish boron deposits are evaporite deposit which were formed in Miocene playa-lake environment. Boron was supplied to the deposits by the volcanic and hydrothermal activities.

Geochemistry and Metamorphism of the Gneisses in Gwangyang-Hadong Area (광양-하동지역에 분포하는 편마암류의 지구화학 및 변성작용)

  • Park, Bae-Young;Suh, Gu-Won
    • Journal of the Korean earth science society
    • /
    • v.29 no.3
    • /
    • pp.221-245
    • /
    • 2008
  • The precambrian granitic gneiss and porphyroblastic gneiss are widely distributed in the Gwangyang-Hadong area of Korea. This study focuses on the geochemical properties and metamorphic P-T conditions of these gneisses. These gneisses are plotted according to granodiorite domain on an IUGS silica-alkali diagram. Geochemical properties of major elements suggest that these rocks are of the sub-alkalic rock series, and were farmed from S-type magmas which were generated in a syn-collision tectonic environment. The amounts of trace elements (Zn, Sc, Sr, V, etc.) decreased as $SiO_2$ concentrations increased. Almandine and spessartine mol%'s and XFe are higher in garnet rims, while pyrope mol%'s are higher in the garnet cores. This seems to be the result of garnet growth and retrogressive metamorphism. Metamorphic zones are divided into sillimanite-cordierite, sillimanite, garnet, and biotite zones. Metamorphic P-T conditions estimated from the gneisses indicate high temperature and low to medium pressure metamorphism (689-757$^{\circ}C$, 5.0-5.6 kbar), followed by medium temperature, low pressure retrorade metamorphism (579-628$^{\circ}C$, 3.1-4.5 kbar), and overprinted retrogade metamorphism (502-558$^{\circ}C$, 1.6-2.3 kbar).

Petrological Study on the Cretaceous Volcanic Rocks in the southwest Ryeongnam Massif: (1) the Mt. Moonyu volcanic mass, Seungju-gun (영남육괴 남서부에 분포하는 백악기 화산암류에 대한 암석학적 연구: (1) 승주군 문유산 화산암복합체)

  • Kim, Young-La;Koh, Jeong-Seon;Lee, Jeong-Hyun;Yun, Sung-Hyo
    • The Journal of the Petrological Society of Korea
    • /
    • v.17 no.2
    • /
    • pp.57-82
    • /
    • 2008
  • The volcanic sequence of the late Cretaceous Moonyu volcanic mass which distributed in the southwestern part of Ryeongnam massif, can be divided into felsic pyroclastic rocks, andesite and andesitic pyroclastic rocks, rhyolite in ascending order. The earliest volcanic activity might commence with intermittent eruptions of felsic magma during deposition of volcaniclastic sediments. Explosive eruptions of felsic pyroclastic rocks began with ash-falls, to progressed through pumice-falls and transmitted with dacitic to rhyolitic ash-flows. Subsequent andesite and andesitic pyroclastic rocks were erupted and finally rhyolite was intruded as lava domes along the fractures near the center of volcanic mass. Petrochemical data show that these rocks are calc-alkaline series and have close petrotectonic affinities with subduction-related continental margin arc volcanic province. Major element compositions range from medium-K to high-K. Petrochemical variation within the volcanic sequence can be largely accounted for tractional crystallization processes with subordinate mixing. The most mafic rocks are basaltic andesite, but low MgO and Ni contents indicate they are fractionated by fractional crystallization from earlier primary mafic magma, which derived from less than 20% partial melting of ultramafic rocks in upper mantle wedge. Based on the stratigraphy, the early volcanic rocks are zoned from lower felsic to upper andesitic in composition. The compositional zonation of magma chamber from upper felsic to lower andesitic, is interpreted to have resulted from fractionation within the chamber and replenishment by an influx of new mafic magma from depth. Replenishment and mixing is based on observations of disequilibrium phenocrysts in volcanic rocks. REE patterns show slight enrichment of LREE with differentiation from andesite to rhyolite. Rhyolite in the final stage can be derived from calc-alkaline andesite magma by fractional crystallization, but it might have underwent crustal contamination during the fractional crystallization.

Petrochemistry of the Pink Hornblende Biotite Granite in the Galmal-Yeongbug Area of the North Gyeonggi (경기북부 갈말-영북일대 백악기 홍색 각섬석흑운모화강암의 암석화학)

  • Yun, Hyun-Soo;Hong, Sei-Sun;Kim, Jeong-Min
    • The Journal of the Petrological Society of Korea
    • /
    • v.15 no.4 s.46
    • /
    • pp.167-179
    • /
    • 2006
  • Division of granites in the Galmal-Yeonbug area, northern Gyeonggi, can be grey hornblende biotite granite (JHBG), biotite granite (JBG) and pink hornblende biotite granite (CHBG) by lithofacies. JHBG of small stock occurs as medium-grained with grey color and minute sphene. JBG occurs as medium-grained and light grey to grey in the north-east part of the area. The main study target CHBG covers in the north-southeast part of the area, and occurs medium-to coarse-grained with pink color. CHBG shows partly minute miaroles, and pegmatitic pocket with druse texture. From the mineral age data (K-Ar method). JHBG and JBG and CHBG are the igneous activity products of Daebo orogeny with different Jurassic and Bulgugsa disturbance of Cretaceous, respectively. And the age data also agree with geologic occurrences and interpretations of the granites in the field. CHBG consists of quartz, plagioclase, alkali-feldspar, biotite, hornblende, allanite, apatite, zircon, some calcite and opaques. Among them, alkalifeldspar and calcite occur characteristically in mostly perthitic othoclase and secondary filling of minutely miarolitic cavity, respectively. In modal analysis and QAP diagram, CHBG plots in granite field, and especially boundary of monzo-and syeno-granite fields. From the major oxide variations, molar A/CNK, $SiO_{2}\;vs\;K_{2}O$, AMF and so on, CHBG belongs to the acidic, peraluminous and high-K calc-alkaline, and was late differentiation product of single granitic magma. Barium and strontium have also dominantly differentiation trend, and in CaO vs Sr and $K_{2}O$ vs Sr, Sr was more participitated in the fractionation of plagioclase than that of alkali-feldspar. Normalized REE concentrations to chondrite value have parallel and gradual LREE enrichment and HREE depletion patterns, and weak Eu negative anomalies and narrow ranges of normalized Eu can suggest that plagioclase fractionations occurred mildly in the whole CHBG.

Depositional Environment and Formation Ages of Eurimji Lake Sediments in Jaechon City, Korea (제천 의림지 호저퇴적물 퇴적환경과 형성시기 고찰)

  • 김주용;양동윤;이진영;김정호;이상헌
    • The Korean Journal of Quaternary Research
    • /
    • v.14 no.1
    • /
    • pp.7-31
    • /
    • 2000
  • Quaternary Geological and geophysical investigation was performed at the Eurimji reservoir of Jaechon City in order to interprete depositional environment and genesis of lake sediments. For this purpose, echo sounding, bottom sampling and columnar sampling by drilling on board and GPR survey were employed for a proper field investigation. Laboratory tests cover grain size population analysis, pollen analysis and $^{14}C$ datings for the lake sediments. The some parts of lake bottom sediments anthropogenically tubated and filled several times to date, indicating several mounds on the bottom surface which is difficult to explain by bottom current. Majority of natural sediments were accumulated both as rolling and suspended loads during seasonal flooding regime, when flash flow and current flow are relatively strong not only at bridge area of the western part of Eurimji, connected to stream valley, but at the several conduit or sewage system surrounding the lake. Most of uniform suspend sediments are accumulated at the lake center and lower bank area. Some parts of bottom sediments indicate the existence of turbid flow and mudflow probably due to piezometric overflowing from the lake bottom, the existence of which are proved by CM patterns of the lake bottom sediments. The columnar samples of the lake sediments in ER-1 and ER-3-1 boreholes indicate good condition without any human tubation. The grain size character of borehole samples shows poorly sorted population, predominantly composed of fine sand and muds, varying skewness and kurtosis, which indicate multi-processed lake deposits, very similar to lake bottom sediments. Borehole columnar section, echo sounding and GPR survey profilings, as well as processed data, indicate that organic mud layers of Eurimji lake deposits are deeper and thicker towards lower bank area, especially west of profile line-9. In addition the columnar sediments indicate plant coverage of the Eurimji area were divided into two pollen zones. Arboreal pollen ( AP) is predominant in the lower pollen zone, whreas non-aboreal pollen(NAP) is rich in the upper pollen zone. Both of the pollen zones are related to the vegetation coverage frequently found in coniferous and deciduous broad-leaved trees(mixed forest) surrounded by mountains and hilly areas and prevailing by aquatic or aquatic margin under the wet temperate climate. The $^{14}C$ age of the dark gray organic muds, ER1-12 sample, is 950$\pm$40 years B.P. As the sediments are anthropogenetically undisturbed, it is assumed that the reliability of age is high. Three $^{14}C$ ages of the dark gray organic muds, including ER3-1-8, ER3-1-10, ER3-1-11 samples, are 600$\pm$30 years B.P., 650$\pm$30 years B.P., 800$\pm$40 years B.P. in the descending order of stratigraphic columnar section. Based on the interpretation of depositional environments and formation ages, it is proved that Eurimji reservoir were constructed at least 950$\pm$40 years B.P., the calibrated ages of which ranges from 827 years, B.P. to 866 years B.P. Ancient people utilize the natural environment of the stream valley to meet the need of water irrigation for agriculture in the local valley center and old alluvium fan area.

  • PDF