• Title/Summary/Keyword: 부하 곡선 생성

Search Result 69, Processing Time 0.025 seconds

Design and Experimental Verification of Two Dimensional Asymmetric Supersonic Nozzle (이차원 비대칭형 초음속 노즐 설계와 실험적 검증)

  • Kim, Chae-Hyoung;Sung, Kun-Min;Jeung, In-Seuck;Choi, Byoung-Il;Kouchi, Toshinori;Masuya, Goro
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.9
    • /
    • pp.899-905
    • /
    • 2009
  • Most supersonic-flow test facility has axisymmetric nozzles or two-dimensional symmetric nozzles. Compared to these nozzles, a two-dimensional asymmetric nozzle has advantages of reducing low cost for various Mach number testing and undesirable flow structure such as shock wave reflection because the nozzle part can be directly connected to the test section part in this type of nozzle. The two-dimensional asymmetric nozzle, which was Mach number 2, was designed for supersonic combustion experiment. And it was verified with the numerical analysis and visualization of Mach wave. This study suggested the practical method for design and verification of supersonic two dimensional asymmetric nozzles.

Development of river discharge estimation scheme using Monte Carlo simulation and 1D numerical analysis model (Monte Carlo 모의 및 수치해석 모형을 활용한 하천 유량 추정기법의 개발)

  • Kang, Hansol;An, Hyunuk;Kim, Yeonsu;Hur, Youngteck;Noh, Joonwoo
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.4
    • /
    • pp.279-289
    • /
    • 2022
  • Since the frequency of heavy rainfall is increasing due to climate change, water levels in the river exceed past historical records. The rating-curve is to convert water level into flow dicscharge from the regression analysis of the water level and corresponding flow discharges. However, the rating-curve involves many uncertainties because of the limited data especially when observed water level exceed past historical water levels. In order to compensate for insufficient data and increase the accuracy of flow discharge data, this study estimates the flow discharge in the river computed mathematically using Monte Carlo simulation based on a 1D hydrodynamic numerical model. Based on the existing rating curve, a random combination of coefficients constituting the rating-curve creates a number of virtual rating curve. From the computed results of the hydrodynamic model, it is possible to estimate flow discharge which reproduces best fit to the observed water level. Based on the statistical evaluation of these samples, a method for mathematically estimating the water level and flow discharge of all cross sections is porposed. The proposed methodology is applied to the junction of Yochoen Stream in the Seomjin River. As a result, it is confirmed that the water level reproducibility was greatly improved. Also, the water level and flow discharge can be calculated mathematically when the proposed method is applied.

Experimental Study of Micro hydropower with Vortex Generation at Lower Head Water (저낙차에서 와류발생부를 구비한 마이크로 소수력에 관한 실험 연구)

  • Choi, In-Ho;Kim, Jong-Woo;Chung, Gi-Soo
    • Journal of Wetlands Research
    • /
    • v.22 no.2
    • /
    • pp.121-129
    • /
    • 2020
  • This paper described a laboratory investigation of micro hydropower at lower head water in a free vortex flow. The vortex height, turbine rotation and torque for straight blade with inner curved edge, twisted blade and curved blade were investigated at the flow rate of 0.0069 ㎥/s in the inlet channel. The results showed that the optimum vortex strength occurred within the range of the diameter of basin to the outlet diameter ratios of 0.17~18.5. The power output and efficiency of straight blade were higher as compared to other blades. The highest amount of generated energy was 12.33 W, the torque was 0.91 N·m and the highest efficiency by considering effective head was 29.5 %, whereas the highest efficiency by considering vortex height was 80.5 % at the rotational speed of 132 rpm. The water vortex velocity of straight blade was about 2.8 times larger than the mean velocity in the inlet channel.

Analysis of hydrologic chracterustucs for Milyang river basin with a GIS (GIS를 이용한 밀양강 유역의 지형학적 특성 분석)

  • 유승근;최성규;문상원
    • Spatial Information Research
    • /
    • v.10 no.1
    • /
    • pp.107-122
    • /
    • 2002
  • Hydrological characteristics would be utilized to apply such as hydrologic modelling or basin management. This study is to extract hydrological characteristics through DEM and stream network analysis using a hydrologic unit map and digital topographic map in Milyang river basin. OEM and stream network was generated from digital topographic map. Especially stream network was allowed direction, stream order, and topology. As a result of the study, it shows that Milyang river has been changing geologically mature stage into old phase and the landform of Milyang river correspond to Horton-Strahler's law on morphology of stream. This methodology can be applicable to other areas related to hydrological characteristics with vector data.

  • PDF

A Multiple Object Detection and Tracking Using Automatic Deformable Model (자동 변형 모델을 이용한 다중 물체 검출 및 추적)

  • 우장명;김성동;최기호
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2003.11a
    • /
    • pp.290-293
    • /
    • 2003
  • 다중 물체 추적은 움직이는 물체를 추출하고 검출된 정보와 물체 정보를 이용하여 움직임 궤도률 추적하는 것이다. 따라서 정확한 움직임 추적이 수행되려면 효율적인 물체의 추출이 선행 되어 져야 한다. 일반적으로 영상 분할 알고리즘은 다양한 증류의 영상에 대한 물체의 수학적 모델이 찌대로 설정되어 있지 않기 때문에 물체를 정확하게 분리해 내기 어렵다. 그러나 물체의 추출에 주로 처리 속도가 빠른 배경영상을 이용한 차(difference) 영상 기법과 반 자동 영상분할인 Snake Model이 갖는 Active Contour 알고리즘과 같이 물체 추출 과정에서 물체의 정의니 semantic 정보를 부여 한다면 개선된 영상 분할의 결과를 얻을 수 있다. 따라서 차 영상 기법과 semantic 정보를 가진 영상분할 알고리즘은 동영상에서 움직임 물체의 VOP(Video Object Plane)를 생성하는 매우 현실적인 방법이다. 본 논문에서는 영상의 상위 레벨Semantic 정보를 이용하기 위해 변형 Snake Model를 이용한 영상분할 방법을 이용하여 영상을 추출한다. 추출된 물체는 윤곽선(곡선) 정보와 함께 에지 성분의 기울기에서 얻은 특징 점을 이용하여 물체를 추적해 나간다.

  • PDF

수로특성을 갖는 감조하천의 퇴적환경 수치모의

  • Baek, Dong-Jin;Kim, Gang-Min;Jeong, Dae-Deuk
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2018.05a
    • /
    • pp.189-190
    • /
    • 2018
  • 금회 연구대상인 아산만 내측에 위치한 배수로는 항만 건설로 인하여 인공적으로 생성된 감조하천의 성격을 띄고 있다. 이러한 인위적으로 설정된 배수로는 일반 하천에 비하여 유속이 크고 단순화된 유로로 인하여 퇴적 또는 침식우세 등의 극단적인 성격이 보인다. 따라서 이러한 퇴적환경 현황을 파악하기 위하여 금회 연구에서는 퇴적환경의 외력조건으로 작용하는 조석, 파랑, 그리고 하천 등의 영향을 분석하였으며, 이에 따라 유동 및 퇴적환경 현황을 재현하였다. 재현결과 협수로와 곡선부에서 침식이 기타 수로에서는 퇴적이 우세한 양상을 보이는 것으로 나타났다. 또한 이를 근거하여 차후 1, 5, 10년에 대한 장기간의 모델링을 수행하였으며, 이에 대한 결과 현재 배수로의 퇴적환경은 평형상태로 유지되는 것으로 판단된다. 그러나 배수로로는 대부분 간사지로 대기노출시간의 높은 편으로 지반의 고화현상이 발생하여 이에 대한 고려는 거의 불가하기 때문에 결과 보정 시 이를 고려한 결과해석이 필요할 것으로 판단된다.

  • PDF

A Study of Smart Convergence Design of English Vocabulary Learning Contents Applying the Periodic Repetitive Method (주기적 반복법을 적용한 영단어 학습콘텐츠 스마트 융합 설계 연구)

  • Kim, Young-Sang
    • Journal of the Korea Convergence Society
    • /
    • v.7 no.4
    • /
    • pp.133-140
    • /
    • 2016
  • This paper suggests designing how to acquire English vocabularies on the smart devices based on the research that a ground-breaking English Vocabulary Learning Contents needs developing. The method makes it possible to develop the contents which helps the learners to master English vocabularies effectively on the smart phone. The core idea of this paper is as in the following: 1) English learners learn 30 vocabularies for three minutes 10 times (one is for a new learning and the other nine ones are for reviews about the first learning) a day. 2) Considering Ebbinghaus Forgetting Curve, the reflection study proposes to provide the learners with three times' reviews: one day, 10days, and 30days later from which they learn the first 30 vocabularies. This contents is mainly made up of 5 developing sections (1)to generate App ID, (2)to access App, (3)to set up Alarm, (4)to process Word learning, and (5)to monitor the result of learning. This proposed idea is optimized to enhance the memory by Ebbinghaus Periodic Repetitive Method, which makes the learners satisfied with their English vocabulary learning.

Scenario-based Flood Disaster Simulation of the Rim Collapse of the Cheon-ji Caldera Lake, Mt. Baekdusan (시나리오에 따른 백두산 천지의 외륜산 붕괴에 의한 홍수재해 모의)

  • Lee, Khil-Ha;Kim, Sang-Hyun;Choi, Eun-Kyeong;Kim, Sung-Wook
    • The Journal of Engineering Geology
    • /
    • v.24 no.4
    • /
    • pp.501-510
    • /
    • 2014
  • Volcanic eruptions alone may lead to serious natural disasters, but the associated release of water from a caldera lake may be equally damaging. There is both historical and geological evidence of the past eruptions of Mt. Baekdusan, and the volcano, which has not erupted for over 100 years, has recently shown signs of reawakening. Action is required if we are to limit the social, political, cultural, and economic damage of any future eruption. This study aims to identify the area that would be inundated following a volcanic flood from the Cheon-Ji caldera lake that lies within Mt. Baekdusan. A scenario-based numerical analysis was performed to generate a flood hydrograph, and the parameters required were selected following a consideration of historical records from other volcanoes. The amount of water at the outer rim as a function of time was used as an upper boundary condition for the downstream routing process for a period of 10 days. Data from the USGS were used to generate a DEM with a resolution of 100 m, and remotely sensed satellite data from the moderate-resolution imaging spectroradiometer (MODIS) were used to show land cover and use. The simulation was generated using the software FLO-2D and was superposed on the remotely sensed map. The results show that the inundation area would cover about 80% of the urban area near Erdaobaihezhen assuming a 10 m/hr collapse rate, and 98% of the area would be flooded assuming a 100 m/hr collapse rate.

PIV Measurement of Pulsatile Flows in 3D Curved Tubes Using Refractive Index Matching Method (3차원 곡관에서의 굴절률 일치법을 이용한 맥동 유동의 PIV 측정)

  • Hong, Hyeon Ji;Ji, Ho Seong;Kim, Kyung Chun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.8
    • /
    • pp.511-517
    • /
    • 2016
  • Three-dimensional models of stenosis blood vessels were prepared using a 3D printer. The models included a straight pipe with axisymmetric stenosis and a pipe that was bent $10^{\circ}$ from the center of stenosis. A refractive index matching method was utilized to measure accurate velocity fields inside the 3D tubes. Three different pulsatile flows were generated and controlled by changing the rotational speed frequency of the peristaltic pump. Unsteady velocity fields were measured by a time-resolved particle image velocimetry method. Periodic shedding of vortices occurred and moves depended on the maximum velocity region. The sizes and the positions of the vortices and symmetry are influenced by mean Reynolds number and tube geometry. In the case of the bent pipe, a recirculation zone observed at the post-stenosis could explain the possibility of blood clot formation and blood clot adhesion in view of hemodynamics.

Study on Power Analysis and Test Verification for STSAT-2 Solar Array (과학기술위성 2호 태양전지 배열기의 전력 성능 분석 및 시험 검증 연구)

  • Park, Je-Hong;Chang, Young-Keun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.5
    • /
    • pp.507-517
    • /
    • 2010
  • The KOREAN AIR - R&D Center has developed a solar array for STSAT-2 Flight Model, SaTReC-KAIST, using a fully localized technology and has verified the performance through a launch vibration test, orbit environment test and electrical performance test. The solar array will be launched at NARO Space Center by KSLV-I which is the first Korean launch vehicle, in May 2010. In this paper, a current-voltage curve that shows the power characteristics of solar arrays was derived by applying elements that affects the power performance of STSAT-2's solar arrays to the solar cell equivalent models. The result was compared to LAPSS test results, and accuracy of the solar cell equivalent model and the power performance simulation has been analyzed.