• Title/Summary/Keyword: 부정정

Search Result 331, Processing Time 0.028 seconds

Proposals of Indeterminate Strut-Tie Model and Load Distribution Ratio for Strength Analysis of Pre-tensioned Concrete Deep Beams (프리텐션 콘크리트 깊은 보의 강도해석을 위한 부정정 스트럿-타이 모델 및 하중분배율의 제안)

  • Chae, Hyun-Soo;Ha, Sang-Yong;Yun, Young-Mook
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.193-194
    • /
    • 2009
  • In this study, a simple indeterminate strut-tie model reflecting all characteristics of the ultimate strengths and complicated structural behavior of pre-tensioned concrete deep beams is presented. In addition, a load distribution ratio, defined as a magnitude of load transferred by a vertical truss mechanism, is proposed to help structural designers perform the strength analysis of pre-tensioned concrete deep beams by using the strut-tie model approaches of current design codes.

  • PDF

An Indeterminate Strut-Tie Model for Prestressed Concrete Beams (프리스트레스트 콘크리트 보의 부정정 스트럿-타이 모델)

  • Chae, Hyun Soo;Yun, Young Mook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.4
    • /
    • pp.801-814
    • /
    • 2015
  • In this study, a statically simple indeterminate strut-tie model is proposed for the rational analysis and design of simply supported prestressed concrete beams by reflecting all characteristics of nonlinear structural behavior and load transfer mechanisms. In addition, a load distribution ratio that allows to transform the proposed indeterminate strut-tie model to a determinate model is also suggested to help structural designers conduct the structural analysis and design of simply supported prestressed concrete beams by using the strut-tie model method of current design codes. For verifying of the validity of the proposed model and load distribution ratio, the ultimate strengths of 47 simply supported prestressted concrete beams tested to failure were estimated and the results were compared with those by the strut-tie model methods of current design codes.

Proposals of Indeterminate Strut-Tie Model and Load Distribution Ratio for Design of RC Corbels (철근콘크리트 코벨의 설계를 위한 부정정 스트럿-타이 모델 및 하중분배율의 제안)

  • Chae, Hyun-Soo;Yun, Young-Mook
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.197-200
    • /
    • 2008
  • The RC corbels with the ratio of shear span-to-effective depth less than 1 are commonly used to transfer loads from beams to columns. The ultimate strengths and structural behaviors of RC corbels are controlled by the shear span-to-effective depth ratio, strength of concrete, shape and quantity of the reinforcement, and geometry of corbels. In this study, a simple indeterminate strut-tie model reflecting all characteristics of the ultimate strengths and complicated structural behaviors is presented for the design of RC corbels. In addition, a load distribution ratio, defined as a magnitude of load transferred by a horizontal truss mechanism, is proposed to help structural designers perform the design of RC corbels by using the strut-tie model approaches of current design codes. The ultimate strengths of 30 RC corbels tested to failure are evaluated by using the ACI 318-05's strut-tie model code for the validity check of the proposed indeterminate strut-tie model and load distribution ratio.

  • PDF

특이함수에 의한 보의 처짐 및 부정정보 문제의 풀이

  • 심재헌
    • Journal of the KSME
    • /
    • v.23 no.6
    • /
    • pp.448-458
    • /
    • 1983
  • 보의 처짐(deflection of beam) 및 부정정보(statically indeterminate beam)의 문제는 수문이나 압력용기등을 비롯한 각종 구조물의 강도계산에서 설계자가 자주 부딪치는 문제이다. 일반적으로 분포하중이나 집중하중 또는 집중 모우멘트가 작용하는 보, 특히 부정정 보의 경우 해석하기 쉬운 방법을 찾아 모우멘트-면적법, 중첩법, 3-모우멘트의 방정식등을 사용하여 반력이나 반력 모우멘트, 처짐량 등을 계산하고 있다. 그러나 이들 방식들은 일률적으로 어느 경우에나 적용하기에 적합한 것은 아니고 복잡한 각종 정리나 공식들을 사용하여야 하며 공액보(conjugated beam)의 반력을 구한다든가, 선도의 면적을 구하기 위하여 힘든 계산을 행하여야 하는 등 쉽지 않아, 부정정 보를 풀어야 할 경우가 발생할 때마다 좀 더 쉬운 접근방법이 없을까 하는 애로를 느껴왔다. 그러던 차 특이함수를 도입하여 문제의 해결을 시도하여 본 바, 복잡한 공식들을 외울 필요 없이 규칙적이고 일률적인 방법으로 쉽게 문제의 해결이 가능하기에 여기 간단히 풀이 방법을 소개하고자 한다.

  • PDF

Load Distribution Ratios of Indeterminate Strut-Tie Models for Simply Supported RC Deep Beams - (II) Validity Evaluation (단순지지 RC 깊은 보 부정정 스트럿-타이 모델의 하중분배율 - (II) 적합성 평가)

  • Kim, Byung Hun;Jeung, Chan Haek;Yun, Young Mook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2A
    • /
    • pp.269-279
    • /
    • 2008
  • In this study, the ultimate strengths of 229 simply supported reinforced concrete deep beams tested to shear failure were evaluated by the ACI 318-05's strut-tie model approach implemented with the presented indeterminate strut-tie model and its load distribution ratio. The ultimate strengths of the deep beams were also estimated by the experimental shear equations, design codes that were based on experimental and theoretical shear strength models, and current strut-tie model design codes. The validity of the present strut-tie model and its load distribution ratio was examined through the comparison of the strength analysis results classified according to the prime design variables of the shear span-to-effective depth ratio, flexural reinforcement ratio, and compressive strength of concrete.

An Indeterminate Strut-Tie Model and Load Distribution Ratio for Reinforced Concrete Corbels (철근콘크리트 코벨의 부정정 스트럿-타이 모델 및 하중분배율)

  • Chae, Hyun Soo;Yun, Young Mook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.4
    • /
    • pp.1065-1079
    • /
    • 2014
  • The ultimate behavior of reinforced concrete corbel is complicated due to the primary design variables including the shear span-to-effective depth ratio a/d, flexural reinforcement ratio, load condition, and material properties. In this study, a simple indeterminate strut-tie model reflecting all characteristics of the ultimate strength and complicated structural behavior is proposed for the design of the reinforced concrete corbels with shear span-to-effective depth ratio of $a/d{\leq}1$. A load distribution ratio, defined as the fraction of applied load transferred by horizontal truss mechanism, is also proposed to help structural designers perform the design of reinforced concrete corbels by using the strut-tie model approaches of current design codes. For the development of the load distribution ratio, numerous material nonlinear finite element analyses of the proposed indeterminate strut-tie model were conducted by changing primary design variables. The ultimate strengths of reinforced concrete corbels tested to failure were evaluated by incorporating the proposed strut-tie model and load distribution ratio into the ACI 318-11's strut-tie model method. The validity of the proposed model and load distribution ratio was examined by comparing the strength analysis results with those by the ACI 318-11's conventional design method and strut-tie model methods of current design codes.

Indeterminate Strut-Tie Model and Load Distribution Ratio of Continuous RC Deep Beams (I) Proposal of Model & Load Distribution Ratio (연속지지 RC 깊은 보의 부정정 스트럿-타이 모델 및 하중분배율 (I) 모델 및 하중분배율의 제안)

  • Kim, Byung-Hun;Chae, Hyun-Soo;Yun, Young-Mook
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.1
    • /
    • pp.3-12
    • /
    • 2011
  • The structural behavior of continuous reinforced concrete deep beams is mainly controlled by the mechanical relationships associated with the shear span-to-effective depth ratio, flexural reinforcement ratio, load and support conditions, and material properties. In this study, a simple indeterminate strut-tie model which reflects characteristics of the complicated structural behavior of the continuous deep beams is presented. In addition, the reaction and load distribution ratios defined as the fraction of load carried by an exterior support of continuous deep beam and the fraction of load transferred by a vertical truss mechanism, respectively, are proposed to help structural designers for the analysis and design of continuous reinforced concrete deep beams by using the strut-tie model approaches of current design codes. In the determination of the load distribution ratio, a concept of balanced shear reinforcement ratio requiring a simultaneous failure of inclined concrete strut and vertical steel tie is introduced to ensure a ductile shear failure of reinforced concrete deep beams, and the primary design variables including the shear span-to-effective depth ratio, flexural reinforcement ratio, and concrete compressive strength are implemented after thorough parametric numerical analyses. In the companion paper, the validity of the presented model and load distribution ratio was examined by applying them in the evaluation of the ultimate strength of multiple continuous reinforced concrete deep beams, which were tested to failure.

Load Distribution Ratios of Indeterminate Strut-Tie Models for Simply Supported RC Deep Beams - (I) Proposal of Load Distribution Ratios (단순지지 RC 깊은 보 부정정 스트럿-타이 모델의 하중분배율- (I) 하중분배율의 제안)

  • Kim, Byung Hun;Yun, Young Mook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2A
    • /
    • pp.259-267
    • /
    • 2008
  • The ultimate strengths of reinforced concrete deep beams are governed by the capacity of the shear resistance mechanism composed of concrete and shear reinforcing bars, and the structural behaviors of the beams are mainly controlled by the mechanical relationships according to the shear span-to-effective depth ratio, flexural reinforcement ratio, load and support conditions, and material properties. In this study, a simple indeterminate strut-tie model reflecting all characteristics of the ultimate strengths and complicated structural behaviors is presented for the design of simply supported reinforced concrete deep beams. In addition, a load distribution ratio, defined as a magnitude of load transferred by a vertical truss mechanism, is proposed to help structural designers perform the design of simply supported reinforced concrete deep beams by using the strut-tie model approaches of current design codes. In the determination of a load distribution ratio, a concept of balanced shear reinforcement ratio requiring a simultaneous failure of inclined concrete strut and vertical steel tie is introduced to ensure the ductile shear failure of reinforced concrete deep beams, and the prime design variables including the shear span-to-effective depth ratio, flexural reinforcement ratio, and compressive strength of concrete influencing the ultimate strength and behavior are reflected upon based on various and numerous numerical analysis results. In the companion paper, the validity of presented model and load distribution ratio was examined by employing them to the evaluation of the ultimate strengths of various simply supported reinforced concrete deep beams tested to failure.

Indeterminate Strut-Tie Model and Load Distribution Ratio of Continuous RC Deep Beams (II) Validity Evaluation (연속지지 RC 깊은 보의 부정정 스트럿-타이 모델 및 하중분배율 (II) 적합성 평가)

  • Chae, Hyun-Soo;Kim, Byung-Hun;Yun, Young-Mook
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.1
    • /
    • pp.13-22
    • /
    • 2011
  • In this study, ultimate strengths of 51 continuous reinforced concrete deep beams were evaluated by the ACI 318M-08's strut-tie model approach implemented with the presented indeterminate strut-tie model and load distribution ratio of the companion paper. The ultimate strengths of the continuous deep beams were also estimated by the shear equations derived based on experimental results, conventional design codes based on experimental and theoretical shear strength models, and current strut-tie model design codes. The validity of the presented strut-tie model and load distribution ratio was examined through the comparison of the strength analysis results classified according to the primary design variables of shear span-to-effective depth ratio, flexural reinforcement ratio, and concrete compressive strength. The present study results of ultimate strengths obtained using the indeterminate strut-tie model and load distribution ratio of the continuous deep beams agree fairly well with those obtained using other approaches. In addition, the present approach reflected the effect of the primary design variables on the ultimate strengths of the continuous deep beams consistently and accurately. Therefore, the present study will help structural designers to conduct rational and practical strut-tie model designs of continuous deep beams.