• Title/Summary/Keyword: 부재력

Search Result 761, Processing Time 0.022 seconds

Distribution of Member Forces Due To Lost Member (기둥의 제거에 의한 부재력 분포)

  • Han, Saem;Park, Seung-Hee;Kim, Jin-Koo;Park, Jong-Yeol
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.289-292
    • /
    • 2010
  • 본 연구에서는 기둥이 제거되는 경우 선형정적해석법을 사용하여 부재력을 산정하고 확률 신경망을 이용하여 그 분포를 파악하였다. 1층 내부기둥이 제거될 경우 다른 부재의 부재력이 가장 큰 것으로 나타났다. 확룰신경망을 이용하여 부재력의 분포를 파악하고 추정하는 것은 연쇄붕괴 시 초고층 건물이나 비정형 건물에 대한 위험부재를 선정하고 파악하는데 시간과 노력을 경감할 수 있는 것으로 나타났다.

  • PDF

TBM segment lining section design of hypothetical subsea tunnels (가상 해저터널 TBM공법 적용 시 세그먼트 단면설계)

  • Choi, Jung-Hyuk;Yoo, Chung-Sik
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.1
    • /
    • pp.49-63
    • /
    • 2015
  • In this paper, the results of evaluation on the member forces in the virtual subsea tunnel lining segments and optimal thickness of the segment with changes in depth were presented. To evaluate member forces on the hypothetical subsea tunnelling cases were developed and the segmental lining member forces were calculated by performing structural analysis using the 2-Ring Beam model. Through a preliminary reinforcement design review of the cross-section using calculated member force, optimal reinforcement design was selected. Based on the results, the variations of member forces with construction conditions such as the cover depth and the hydraulic pressure are presented. In addition, optimum segment lining designs were developed for various tunnelling conditions.

Evaluation of Internal Bracing Member Forces due to Distortional Behaviors of Tub Section Steel Box Girders (U형 강박스 거더의 뒤틀림 거동에 의한 내부 수직브레이싱 부재력 평가)

  • Kim, Kyung-Sik
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.2
    • /
    • pp.249-259
    • /
    • 2011
  • In this study, the distortional behaviors of tub-section steel girders subjected to torsional loading were analyzed, and predictor equations were developed for estimating the member forces induced in the internal bracing system installed in the steel tub girders. Torsional loadings originated either by eccentric vertical loading or girder curvature were decomposed into the pure torsional force component that does not affect the distortional box deformation, and into the distortional force component that directly induces box distortion. The axial member forces induced in the internal cross frames were formulated as a function of the magnitude of torsional loading through the analytical investigation of the interactions between the distortional force component and internal cross frames. To verify the proposed equations, three-dimensional finite element analysis (3D FEA) was conducted for the straight simple-span girder and the three-span continuous girder samples. Very good agreement was found between the member forces from the FEA and the proposed equations.

Practical Design Method for Coupling Beams of Tall Buildings with Dual Frame System (이중골조형식 고층건물 커플링보의 실용설계)

  • Yoon, Tae-Ho;Kim, Jin-Sang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.1
    • /
    • pp.525-532
    • /
    • 2014
  • In this study, practical design method of coupling beams is proposed. The member forces varies according to the location of the members and the members at 25%~40% of building height shows large member forces. The 100mm increase of wall thickness causes 3~4% variation of member forces and the 100MPa increase of concrete strength decrease approximately 3% of member forces. The required strength of coupling beams is twice the resistant strength and 80% reduction of coupling beam stiffness is necessary to fulfill the design criteria. The stiffness reduction of coupling beams is not necessary over the entire stories and the strength reduction range can be estimated considering design requirements.

Prediction of TBM tunnel segment lining forces using ANN technique (인공신경망 기반의 TBM 터널 세그먼트 라이닝 부재력 평가)

  • Yoo, Chung-Sik;Choi, Jung-Hyuk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.1
    • /
    • pp.13-24
    • /
    • 2014
  • This paper presents development of artificial neural network(ANN) based prediction method for section forces of TBM tunnel segment lining in an effort to develop an automatized design technique. A series of design cases were first developed and subsequently analyzed using the two-ring beam finite element model. The results were then used to form a database for use as training and validation data sets for ANN development. Using the database, optimized ANNs were developed that can readily be used to predict maximum sectional forces and their distributions. It is shown that the compute maximum section forces and their distributions by the developed ANNs are almost identical to the computed by the two-ring beam finite element model, implying that the developed ANNs can be used as design tools which expedite routine design calculation process. The results of this study indicate that the neural network model can be effectively used as a reliable and simple predictive tool for the prediction of segment sectional forces for design.

Estimation of the Design Member Forces in Very Large Concrete Floating Structure due to Wave Loads (파랑하중에 대한 초대형 콘크리트 부유식 구조물의 설계 부재력 산정)

  • Thanh, Nguyen Huu;Noh, Hyuk Chun;Kim, Seung Eock;Na, Seong Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.6A
    • /
    • pp.641-650
    • /
    • 2009
  • This paper presents new equations for member forces in concrete floating structures under wave loadings. The currently adopted design equations for wave loadings disregard the effect of mismatch between design wave length and the length of the structure. In most cases, however, additional internal forces occur due to disequilibriating buoyancy caused by the difference between design wave length and the length of the structure. In this study, new design equations considering the influence of the disequlibriating buoyancy is proposed. In addition, finite element solutions are sought to demonstrate the adequacy of the proposed design formulae in estimating the actual internal forces considering the structure as either rigid or flexible. It has been found that member forces are decreased approximately to around 55% for flexible model when compared with the rigid one.

Approximate Method to Estimate Member Forces in the Column of a Rigid Frame (강접골조 기둥의 부재력 산정을 위한 근사해석법)

  • Kim, Young-Chan;Yoon, Tae-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.7
    • /
    • pp.4611-4617
    • /
    • 2014
  • This paper proposes an approximate method to estimate member forces of columns in a rigid frame. One of the conventional methods, Cantilever Method assumes the midpoint of a column as a hinge and linear distribution of axial stresses regarding the centroid of the column areas. As a result, it shows erroneous results compared to those of matrix analysis of two frames. In this study, a new method is proposed to estimate the member forces in columns and location of hinges in columns, which can be adopted easily by a practicing engineer, and numerical examples showed improved results compared to conventional methods.

Wall Tie Member Force Curve for the Construction Tower Crane (건축용 타워크레인 마스트의 횡방향 지지요소인 월타이 부재력 특성곡선)

  • Ko, Kwang IL;Oh, W.H.;Lee, E.T.
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.6
    • /
    • pp.697-706
    • /
    • 2006
  • Tower crane's wall tie is generally used for extending of mast height according to rising of lifting height. In order to get wall tie member force this problem, this study concerning wall tie is based on load data described in manual book of 290HC model. This study made the equation of wall tie member force and computer programming for calculating wall tie member force and then get ${\theta}-P$ curves(angle-wall tie force). After considering the ${\theta}-P$ curves, optimum angle range ($48.4^{\circ}{\sim}77.2^{\circ}$) about wall ties (A), (C) members was obtained. Member force of wall tie (B) was changed from tension to compression or from compression to tension at $74^{\circ}$ in service and $54^{\circ}$ in out of service. When both horizontal force($H_A$) and torsional moment ($M_D$) were varied from (+) to (-), wall tie force(A, B, C) were changed almost symmetrically about ${\theta}$-axis. Because this study was based on wall tie analysis conditions, wall tie members in symmetric and ideal geometry shape used for analizing wall tie of tower crane, it is necessary to have more careful verification in order to apply generally the results of this study.

Development of Drift Design Method for High-rise Buildings Considering Characteristics of Member Forces (부재력 특성을 고려한 설계변수를 사용한 고층건물 변위조절설계법 개발)

  • 서지현;박효선
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.2
    • /
    • pp.215-222
    • /
    • 2004
  • Drift design methods using resizing techniques have been presented as a practical drift control methods of high-rise buildings. Most drift design methods using the resizing techniques have adopted the cross-sectional area as the design variables for all structural members in a structure. However, the cross-sectional area is not always governing sectional property for the structural members, but the governing sectional property of each member is dependent on the characteristics of member forces. In this paper, a drift design method using the sectional property related to the governing displacement participation factor as the design variable of each member is presented and applied to the drift design of 20-story steel frame-shear wall system. It can be noted from example test that drift design method considering member characteristics shows similar or somewhat better results in the view point of structural weights and the accuracy of displacement estimation.

Optimum of Reinforced Concrete Framed Structures by Multilevel Decomposition (다단계분할법에 의한 철근콘크리트 뼈대구조의 최적화에 관한 연구)

  • 변근주;최홍식
    • Magazine of the Korea Concrete Institute
    • /
    • v.1 no.1
    • /
    • pp.87-94
    • /
    • 1989
  • 철근콘크리트 뼈대구조와 같이 설계변수가 과다하고, 제약조건식이 복잡한 구조물의 최적화를 위하여는 구조물을 여러개의 부분구조물로 분할하여 최적해를 구하는 분할법이 많이 사용되고 있다. 그러나 기존의 분할법에 의한 최적화는 구조해석과정과 고정된 부재력에대한 단면설계변수의 부분최적화 과정만으로 이루어지기 때문에, 최적해를 구하려면 반복적인 재해석과정만을 수행하지 않으면 안된다. 따라서 본 연구에서는 다단계분할법에 의하여 철근콘크리트 뼈대구조의 최적화 문제를 3단계로 형성하고, 분할된 부분최적화문제의 최적화시 전체구조의 강성 및 부재력 변화가 반영되어 부분 구조물의 결합을 유지시킬 수 있는 최적화 알고리즘을 제안하였다. 최적화 문제에서 설계변수로는 단면의 크기, 철근량, 모멘트 재분배율등을 취하고,목적함수는 경비함수, 제약조건으로는 강도설계법에 의한 부재강도, 시방서의 요구사항등을 고려하여 문제를 형성하였다. 본 연구에서 개발한 다단계 최적화과정의 첫째 단계에서는 탄성해석에 의하여 재분배모멘트의 설계공간을 형성한다. 이 때 부재력변화량추정(forece approximation technique)에 의하여 단면치수의 변화에 따른 부재력의 변화를 제약조건식 내에 포함시킬 수 있도록 하였다. 둘째 단면에서는 첫째 단계에서 구한 부재력변화량추정이 포함된 제약조건식 내에서 무제약최소화기법에 의하여 단면치수를 최적화하도록 하였다. 셋째 단계에서는 재분배 모멘트를 최적화하였으며, 이 때 재분배모멘트의 변화에 따른 단면설계 변수의 변화는 둘째 단계에서 구한 설계민감도(design sensitivity)를 이용하여 반영시키도록 하였다. 제안된 알고리즘을 1층 2경간 및 2층 1경간 뼈대구조에 적용하여 알고리즘의 타당성과 효율성을 입증하였다. 따라서 본 연구의 알고리즘은 철근 콘크리트 뼈대구조의 최적설계에 안정성있게 적용할 수 있을 것으로 판단된다.