• Title/Summary/Keyword: 부성부하

Search Result 4, Processing Time 0.022 seconds

Control of AC Digital Power Supply using an AVR Chip (AVR 칩을 이용한 AC 디지털 파워서플라이의 제어)

  • Park, Jong-Moon;Jeong, Gang-Youl
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.12b
    • /
    • pp.652-655
    • /
    • 2011
  • 본 논문에서는 Atmel사의 AVR 칩인 ATmega128을 이용한 AC 파워서플라이의 제어를 제안한다. 제안한 AC 파워서플라이는 풀브리지 구조를 이용하며, 그 부하로는 냉음극형 형광램프(램프)를 적용하였다. 특별히 램프는 부성저항 특성을 가진 부하이기 때문에 제안한 파워서플라이는 안정기 기능을 포함하며, AVR 칩을 이용하여 구조가 간단한 장점을 가진다. 제안한 파워서플라이의 동작특성은 실험결과로 보인다.

  • PDF

A Design of Homopolar Generator System Considering Instability with Negative Characteristics Load (부성부하와의 발진을 고려한 단극발전기 시스템 설계)

  • Kim, In-Soo;Seong, Se-Jin
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.449-451
    • /
    • 2008
  • This paper studies the instability between homopolar generator and constant power load with negative impedance characteristics, provides the design method of homopolar generator system which overcomes the instability. In case of magnitude and phase of impedance of source and load mismatch, control instability of source can occur. For the safety of phase of load impedance, the gain of P, I controller with sufficient phase margin is applied through analysis on the simulation model of generator system, and the gain limit of load impedance is ensured by limitation of the gain margin of generator system. The stability of power system can be increased by considering and analyzing the impedance of source and load.

  • PDF

A Study on the Performance Improvement and Modeling of Generator for Small Gas Turbine Engine (소형 가스터빈 엔진용 발전기 성능개선 및 모델링 연구)

  • Kim Insoo;Yoon Hyunro
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.7 no.3 s.18
    • /
    • pp.174-183
    • /
    • 2004
  • In this paper, the performance improvement and modeling of small onboard generator were described. As the characteristics of the field coil which are a major parameters of generator were improved, the system bandwidth could be increased, therefore the generator could also be satisfied with fast characteristic loads. Established the brief control model of the generator, it could be possible to do the analysis of generator performance, and improve the operational stability of the generator system using the control model.

Design of a Wideband Frequency Synthesizer with Low Varactor Control Voltage (낮은 바렉터 제어 전압을 이용한 광대역 주파수 합성기 설계)

  • Won, Duck-Ho;Choi, Kwang-Seok;Yun, Sang-Won
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.1
    • /
    • pp.69-75
    • /
    • 2010
  • In this paper, with using the clapp type VCO(Voltage Controlled Osillator) configuration a wideband frequency synthesizer in UHF band is proposed. In order to design a wideband frequency synthesizer, the variation of phase in the negative resistance circuit as well as the load circuit was analyzed. Based on this result we propose a method to widen the operation range of the VCO. A frequency synthesizer using the proposed wideband VCO was designed and fabricated. It is shown that the synthesizer has the operating frequency range of 740~1,530 MHz by 0~5 V varactor tuning voltage, and it had the output power of 2~-6 dBm. Moreover, the phase noise measured as -77 dBc/Hz at 10 kHz offset, and as -108 dBc/Hz at 100 kHz offset from the oscillation frequency.