• Title/Summary/Keyword: 부상 화염

Search Result 124, Processing Time 0.021 seconds

Mechanism of Lifted Flames in Coflow Jet with Diluted Methane (질소희석된 메탄 동축류 제트에서 화염 부상 메커니즘에 관한 연구)

  • Hong, Ki-Jung;Won, Sang-Hee;Kim, Jun-Hong;Chung, Suk-Ho
    • 한국연소학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.177-184
    • /
    • 2003
  • Stabilization mechanism of lifted flame in the near field of coflow jets has been investigated experimentally and numerically for methane fuel diluted with nitrogen. Lifted flames were observed only in the near field of coflow jets until blowout occurred in the normal gravity condition. To elucidate the stabilization mechanism for the stationary lifted flames in the near field of coflow jets for the diluted methane having the Schmidt number smaller than unity, the behaviors of the stationary lifted flame in microgravity and unsteady propagation phenomena were investigated numerically at various conditions of jet velocity. It has been founded that the buoyancy plays an important role for flame stabilization of lifted flame in normal gravity and the stabilization mechanism is due to the significant variation of the propagation speed of lifted flame edge compared to the local flow velocity at the edge.

  • PDF

Experimental Study on the Stability Enhancement of Nonpremixed Flames in Coflow Jets (동축류 제트에서 전기장에 의한 화염 안정성 증진에 대한 실험적 연구)

  • Won, Sang-Hee;Ryu, Seung-Kwan;Chung, Suk-Ho;Cha, Min-Suk
    • 한국연소학회:학술대회논문집
    • /
    • 2007.05a
    • /
    • pp.191-196
    • /
    • 2007
  • The enhancement of flame stability in coflow jets has been investigated experimentally by observing the liftoff behaviors of nonpremixed propane and methane flames in the electric fields. The liftoff or blowoff velocities has been measured in terms of the applied AC voltages and frequency. The experimental results showed that the liftoff velocity could be extended significantly just by applying the high voltage to the central fuel nozzle both for propane and methane. As increasing the applied voltage, the liftoff velocity increases almost linearly with the applied voltage and have its maximum value at certain applied voltage. After that, the liftoff velocity showed decrease with the applied voltage. Through the experimental observation, we found that the liftoff velocity could be correlated well with the applied voltage and frequency in the linearly increasing regime. And after having maximum in the liftoff velocity, it was observed that the liftoff velocity decreases with the applied voltage irrespective of AC frequencies. To visualize the change of flame structure with electric fields, planar laser induced fluorescence technique was adopted, and the enhancement of flame stability has been explained based on the flame structural change in electric fields.

  • PDF

Study of Hydrogen Turbulent Non-premixed Flame Stabilization in Coaxial Air Flow (동축공기 수소 난류확산화염에서의 화염안정성에 대한 실험적 연구)

  • Oh, Jeong-Seog;Kim, Mun-Ki;Choi, Yeong-Il;Yoon, Young-Bin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.3
    • /
    • pp.190-197
    • /
    • 2008
  • It was experimentally studied that the stabilization mechanism of turbulent, lifted jet flames in a non-premixed condition to reveal the newly found liftoff height behavior of hydrogen jet. The objectives are to report the phenomenon of a liftoff height decreasing as increasing fuel velocity, to analyse the flame structure and behavior of the lifted jet, and to explain the mechanisms of flame stability in hydrogen turbulent non-premixed jet flames. The hydrogen jet velocity was changed from 100 to 300m/s and a coaxial air velocity was fixed at 16m/s with a coflow air less than 0.1m/s. For the simultaneous measurement of velocity field and reaction zone, PIV and OH PLIF technique was used with two Nd:Yag lasers and CCD cameras. As a result, it was found that the stabilization of lifted hydrogen diffusion flames is correlated with a turbulent intensity and Karlovitz number.

The Effects of Velocity and Concentration in the Oxidizer of Heptane Pool Fires on the Flame Stability (헵탄 풀화재 화염안정성에 관한 산화제 유속 및 농도 효과)

  • Jeong, Tae-Hee;Lee, Eui-Ju
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.3
    • /
    • pp.309-314
    • /
    • 2012
  • Flame flickering occurs mainly because of the buoyancy force for pool fires under ambient air. The cup-burner flame was used for experimental investigation of the effect of the oxidizer velocity on the gravitational instability. The results showed that the flickering frequency decreased with increasing oxidizer velocity. The frequency-buoyancy relation with nondimensional variables coincided with that of the buoyant flume and pool fires when the characteristic velocity was defined as the difference between the fuel and oxidizer velocities, which implies that the origin of the gravitational instability is the Kelvin-Helmholtz instability in the shear layer. The effect of the oxidizer composition on the instability was also examined through nitrogen dilution in the oxidizer stream. As the concentration of inert gas increased, the length of the blue flame increased and lift-off behavior was observed. The oscillation frequency was independent of the dilution ratio, but was related to the local flame structure.

Study of Fire and Explosion Prevention of an Internal Floating Roof Tank (내부 부상형저장탱크(IFRT) 화재·폭발 예방대책에 관한 연구)

  • Koo, Chae-Chil;Choi, Jae-Wook
    • Fire Science and Engineering
    • /
    • v.33 no.1
    • /
    • pp.45-49
    • /
    • 2019
  • This study examined the safety of storage tanks by analyzing the causes of fire on outdoor storage tanks. The outdoor storage tank is a fixed device for the long-term storage of dangerous goods and consists of a tank body and accessories; the accessories consist of a vent system, breather valve, flame arrestor, etc. The flame arrestor is a necessary safety measure to prevent fire explosions on outdoor storage tanks. On the other hand, it has been suggested that the installation of a flame arrester is necessary to compare the domestic and international standards. In addition, the flame arrester should be installed in the existing outdoor storage tanks, to complement foreign standards because there are not enough domestic standards to verify the performance of the flame arrester.

Temperature profile in the laminar lifted flame (부상화염 내부의 온도분포)

  • An, Hee Sung;Lee, Byeong Jun;Park, Chul-Woung;Park, Seung-Nam
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.357-358
    • /
    • 2014
  • Coherent anti-Stokes Raman spectroscopy is one of the best tools to measure temperature distributions in the flame. Since it does not disturb the flow field, it could be used to study anchoring mechanism especially in the lifted flame. However, the length of probe volume is, normally, much greater than flame thickness. This weak point was overcome with lens combination in this study. It was found out that no peculiar temperature changes was happened near tribrachial point and heat transfer to the upstream was minimal near the flame anchoring position.

  • PDF

Combustion Performance Test of Syngas Gas in a Model Gas Turbine Combustor - Part 2 : NOx/CO emission Characteristics, Temperature Characteristics and Flame Structures (모델 가스터빈 연소기에서 합성가스 연소성능시험 - Part 2 : NOx/CO 배출특성, 온도특성, 화염구조)

  • Lee, Min Chul;Yoon, Jisu;Joo, Seong Pil;Yoon, Youngbin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.8
    • /
    • pp.639-648
    • /
    • 2013
  • This paper describes on the NOx/CO emission characteristics, temperature characteristics and flame structures when firing coal derived synthetic gas especially for gases of Buggenum and Taean IGCC. These combustion characteristics were observed by conducting ambient-pressure elevated-temperature combustion tests in GE7EA model combustor when varying heat input and nitrogen dilution ratio. Nitrogen addition caused decrement in adiabatic flame temperature, thus resulting in the NOx reduction. At low heat input condition, nitrogen dilution raised the CO emission dramatically due to incomplete combustion. These NOx reduction and CO arising phenomena were observed at certain flame temperature of $1500^{\circ}C$ and $1250^{\circ}C$, respectively. As increasing nitrogen dilution, adiabatic flame temperature and combustor liner temperature were decreased and singular points were detected due to change in flame structure such as flame lifting. From the results, the effect of nitrogen dilution on the NOx/CO and flame structure was examined, and the test data will be utilized as a reference to achieve optimal operating condition of the Taean IGCC demonstration plant.

Effect of Diluents and Oxygen-Enrichness on the Stability of Nonpremixed Flame (산소부화와 희석제에 따른 비예혼합 화염의 안정성)

  • 배정락;이병준
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.10
    • /
    • pp.1458-1464
    • /
    • 2002
  • $CO_2$ is well known greenhouse gas which is the major source of global warming. Reducing $CO_2$ emission in combustion process can be achieved by increasing combustion efficiency, oxygen enriched combustion and recirculation of the emitted $CO_2$ gas. Stability of non-premixed flame in oxygen enriched environment will be affected by the amount of oxygen, kind of diluents and fuel exit velocity. The effects of these parameters on flame liftoff and blowout are studied experimentally oxidizer coflowing burner. Experiments were divided into three cases according as where $CO_2$gas was supplied. - 1) to coflowing air, 2) to fuel with 0$_2$-$N_2$ coflow, 3) to coflowing oxygen. Flame in air coflowing case was lifted in turbulent region. Flame lift and blowout in laminar region with the increase in $CO_2$ volume fraction in $CO_2$-Air mixture makes flame lift and blowout in laminar region. Increase in oxygen volume fraction makes flame stable-i.e. flame liftoff and blowout occur at higher fuel flowrates. Liftoff height was non-linear function of nozzle exit velocity and affected by the $O_2$ volume fraction. It was found that the flame in $O_2$-$N_2$ coflow case was more stable than $O_2$-$CO_2$ case, Liftoff heights vs (nozzle exit velocity/laminar burning velocity)$^{3.8}$ has a good correlation in $O_2$-$CO_2$ oxidizer case.

진공 플라즈마 용사 코팅 조건에 따른 초고온 세라믹 코팅의 미세구조

  • Yu, Yeon-U;Jeon, Min-Gwang;Nam, Uk-Hui;Byeon, Eung-Seon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.135-135
    • /
    • 2016
  • 차세대 가스터빈 엔진 및 초음속 항공기 내 고온부의 온도가 증가함에 따라, 기존의 초내열합금 기반 소재를 사용하기 어려워지고 있다. 초고온 세라믹스는 높은 기계적 물성, 화학적 안정성 등 우수한 고온 특성을 가지고 있어 기존의 초고온 소재를 대체 할 수 있는 물질로 부상되고 있다. 하지만 기존의 금속 기반 소재 대비 높은 밀도로 인하여 초고온 세라믹 단일체를 비행체 부품에 적용하기에는 어려움이 있다. 이에 초고온 세라믹스와 탄소섬유를 포함하는 세라믹 복합체(Ceramic Matrix Composite, CMC)를 제작하여 동등한 기계적 물성을 보이면서 무게를 감소시키는 연구들이 진행 중에 있다. 초고온 세라믹스가 함침 된 세라믹 복합체의 경우 우수한 내삭마, 내산화 특성을 보이지만, 장시간 고온에 노출되어 탄소 섬유가 드러나게 되면 급격한 산화로 인해 소재 특성의 열화가 진행되는 단점을 가지고 있다. 따라서, 탄소 섬유가 드러나지 않도록 복합체 표면에 코팅층을 형성하여 세라믹 복합체 모재를 보호하는 방법이 활발히 연구되고 있다. 본 연구에서는 진공 플라즈마 용사 공정을 이용하여 다양한 공정조건 하에서 초고온 세라믹 코팅층을 형성하였다. 수십 마이크론 크기 분포를 갖는 HfC 분말을 Ar 유송 가스를 이용하여 플라즈마 화염 내부로 투입하였다. 플라즈마 화염 가스는 Ar 과 H2를 혼합하여 구성되었으며, 분위기 가스로는 N2를 사용하였다. 코팅에 사용된 모재로는 ZrB2 단일체와 SiC가 미량 포함된 HfC 단일체를 사용하였다. 다양한 공정 조건하에서 형성된 HfC 코팅층의 두께, 미세 조직구조를 SEM을 이용하여 관찰하였으며, XRD를 이용하여 형성된 HfC 코팅층의 결정구조를 분석하였다.

  • PDF

Effects of acoustic excitation on the combustion emission characteristics of a non-premixed flame (비예혼합 화염에서 음향 가진이 연소 배출 특성에 미치는 영향)

  • Lee, Kee-Man;Park, Jeong;Cho, Han-Chang
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.878-883
    • /
    • 2001
  • The effects of external excitation with various frequencies and amplitudes on the flame behavior and pollution emission characteristics from a laminar jet flame are experimentally investigated. Measurements of $NO_{x}$ emission indices($EINO_{x}$), performed in unconformed and vertical lifted flame at resonance frequency by strong excitation, have been conducted experimentally. It was also conducted to investigate the effects of excited frequency on $NO_{x}$ emissions with a various frequency ranged 0Hz to 2kHz. From the vertical lifted flame like turbulent of the excited jet with resonance frequency was shown that the dependence of $NO_{x}$ emission could be categorized into three groups: Group 1 of intermediate flame length and relative narrow flame volume yielding low $NO_{x}$ emission, Group 2 of short flame length but large flame volume yielding high $NO_{x}$ emission and Group 3 of long flame length with low temperature contours yielding high $NO_{x}$ emission.

  • PDF