• Title/Summary/Keyword: 부분좌굴

Search Result 61, Processing Time 0.02 seconds

Inelastic Buckling Analysis of Frames with Semi-Rigid Joints (부분강절 뼈대구조의 비탄성 좌굴해석)

  • Min, Byoung Cheol
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.3
    • /
    • pp.143-154
    • /
    • 2014
  • An improved method for evaluating effective buckling length of semi-rigid frame with inelastic behavior is newly proposed. Also, generalized exact tangential stiffness matrix with rotationally semi-rigid connections is adopted in previous studies. Therefore, the system buckling load of structure with inelastic behaviors can be exactly obtained by only one element per one straight member for inelastic problems. And the linearized elastic stiffness matrix and the geometric stiffness matrix of semi-rigid frame are utilized by taking into account 4th terms of taylor series from the exact tangent stiffness matrix. On the other hands, two inelastic analysis programs(M1, M2) are newly formulated. Where, M1 based on exact tangent stiffness matrix is programmed by iterative determinant search method and M2 is using linear algorithm with elastic and geometric matrices. Finally, in order to verify this present theory, various numerical examples are introduced and the effective buckling length of semi-rigid frames with inelastic materials are investigated.

Buckling Strength of Orthogonally Stiffened Steel Plates under Uniaxial Compression (일축압축을 받는 직교로 보강된 판의 좌굴강도)

  • Choi, Dong Ho;Chang, Dong Il;Choi, Hang Yong
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.4 s.37
    • /
    • pp.731-740
    • /
    • 1998
  • Orthogonally stiffened steel plates are used for orthotropic steel decks of long-span bridges because of high degree of flexural and torsional resistances and good load-distribution behavior. An analytic study is presented for evaluating the buckling strength of orthogonally stiffened plates subjected to uniaxial compression. By using the plate theory, the buckling stress under overall and partial buckling modes, is derived. Parametric studies are performed to show the effects of the stiffness and the number of transverse and longitudinal ribs on the buckling strength. The results show quantitatively strong influence of stiffness and spacing of longitudinal and transverse ribs.

  • PDF

A Study on the Buckling Characteristics of Spacer Grids in Pressurized Water Reactor Fuel Assembly (경수로용 핵연료집합체 지지격자의 좌굴특성에 관한 연구)

  • Jeon Sang-Youn;Lee Young-Shin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.4 s.70
    • /
    • pp.405-416
    • /
    • 2005
  • This study contains the static buckling tests and static buckling analyses for small size grids and full size grids. The buckling tests and finite element analyses were performed to evaluate the buckling characteristics of the spacer grids in a pressurized water reactor fuel assembly and to evaluate the possibility of the prediction lot the buckling strength of spacer grids. The buckling tests were performed for small size grids and full size grids, and the correlations between buckling strength and the number of straps and the correlations between buckling strength and the number of rows are derived based on the test results. The static buckling analyses were performed to identify the effect of the number of rows and the number of columns on the buckling strength of spacer grid by a finite element method using ANSYS program and the results were compared with the buckling test results.

Buckling Loads of Piles with Allowance for Self-Weight (자중효과를 고려한 말뚝의 좌굴하중)

  • Lee, Joon-Kyu;Lee, Kwang-Woo;Jeon, Young-Jin;Kwon, O-Il;Choi, Yong-Hyuk;Choi, Jeong-Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.187-193
    • /
    • 2023
  • This paper presents the buckling behavior of a pile considering its self-weight. The differential equation and boundary conditions governing the buckling of partially embedded piles in nonhomogeneous soils are derived. The buckling load and mode shape of the pile are numerically computed by the Runge-Kutta method combined with the Regula-Falsi algorithm. The obtained numerical solutions for bucking loads agree well with the results available from the literature. Numerical examples are given to analyze the buckling load and mode shape of the piles as affected by the self-weight, embedment ratio, slenderness ratio and boundary condition of the pile as well as the aspect ratio and rigidity ratio of the subgrade reaction. It is found that the self-weight of the pile leads to the reduction of the buckling load, indicating that neglecting the effect of self-weight may overestimate the buckling load of partially embedded piles.

Crippling Analysis of Z-Section Composite Stringers (Z-단면 복합재 스트링거의 크리플링 해석)

  • 최상민;권진회
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.11a
    • /
    • pp.246-250
    • /
    • 1999
  • 항공기 날개 및 동체의 보강재로 사용되는 스트링거가 압축하중을 받게되면 플렌지와 웹에서의 부분좌굴이 발생하고 이는 좌굴이 발생하지 않은 부분에 과도한 하중이 걸리게 하여 스트링거의 전체적인 하중지지능력을 현저히 감소시킨다. 이러한 손상의 형태가 크리플링(Crippling)이다. (중략)

  • PDF

Influence of Lateral Ballast Resistance on the Buckling Fragility Curve of the Continuous Welded Rail Tracks (장대레일 궤도의 좌굴 취약도 곡선에 대한 도상횡저항력의 영향)

  • Bae, Hyun Ung;Choi, Jin Yu;Lee, Chin Ok;Lim, Nam Hyoung
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.185-185
    • /
    • 2011
  • 기존 장대레일 궤도의 안정성 평가는 궤도 매개변수에 대하여 고정된 안전측의 값을 사용하는 결정론적인 해석에 의존해서 평가되어져 왔다. 그러나 실제현장의 궤도조건은 많은 영향인자들에 의해 그 특성이 불확실하게 변하고 있다. 따라서 온도하중에 의한 궤도 좌굴에 영향을 미치는 궤도 구성인자들의 불확실성 및 임의성을 보다 합리적으로 고려하기 위해서 확률론적 기법을 적용하는 것이 필수적이다. 본 연구에서는 기존 본 연구진에 의해 개발된 장대레일 궤도의 좌굴확률 평가시스템을 이용하여 좌굴 취약도 곡선을 나타내었으며, 궤도 좌굴에 영향을 미치는 주요변수 중 하나인 도상횡저항력에 대한 영향을 분석하였다. 좌굴확률 평가시스템에서는 장대레일 궤도의 좌굴확률을 산정하기 위하여 구조물의 안정과 파괴를 판단할 수 있는 기준을 한계상태방정식으로 표현하고, 이 한계상태방정식으로부터 확률론적 기법 중 하나인 AFOSM(Advanced First Order Second Moment) 방법을 이용하여 파괴확률의 간접적인 지표인 신뢰도지수(${\beta}$)를 통해 좌굴확률을 계산한다. 한계상태방정식에서 구조물의 강도(보유성능)에 해당하는 부분은 궤도의 허용좌굴온도이고, 하중(요구성능)에 해당하는 부분은 레일온도하중으로써 현재 레일온도와 중립온도의 차로 반영된다. 허용좌굴온도 산정에 고려되는 주요변수는 곡선반경(Radius), 도상횡저항력(Lateral Ballast Resista nce), 연직도상강성(Vertical Ballast Stiffness), 궤도 틀림량(Misalignment), 틀림길이(Half Wave Length), 열차운행속도(Velocity)이다. 각 확률변수들이 갖는 확률분포는 모두 정규분포로 가정하였다. 궤도의 기하학적 특성은 곡선반경 5,000m에 대해 고려하였으며, 열차는 KTX의 제원을 사용하여 정지된 상태에서 고려하였다. 틀림량과 틀림길이는 이에 대한 통계적 특성자료가 부족하여 확률변수로 고려하지 않고 결정론적 값으로 취급하였다. 레일온도의 통계적 특성치는 본 연구진에 의해 구축된 기후요소 및 레일온도 DB를 근거로 결정하였으며, 중립온도는 선로관리지침에 따라 $25{\pm}3^{\circ}C$를 기준으로 결정하였다. 또한 도상횡저항력은 실측 데이터를 참고로 하여 평균값에서 10%의 변동량을 갖는 것으로 보고 통계적 특성치를 결정하였다. 도상횡저항력이 좌굴확률에 미치는 영향을 매우 큰 것을 알 수 있었으며, 레일온도 $60^{\circ}C$일 때 도상횡저항력이 증가하면서 감소되는 좌굴확률이 도상저항력이 커질수록 그 감소량이 작아지는 것을 알 수 있었다.

  • PDF

Crippling Test of Z-section Graphite/Epoxy Stringers (Z-단면 Graphite/Epoxy 스트링거의 크리플링 실험)

  • 최상민;권진희
    • Composites Research
    • /
    • v.14 no.3
    • /
    • pp.32-41
    • /
    • 2001
  • Z-section composite stringers with various lengths and flange-widths are tested in axial compression for the validation of a finite element algorithm to calculate the buckling and crippling stresses of composite laminated stringers. The stacking sequence considered is $[{\pm}45/0/90]s$. Strain gages are attached to each specimen, and deflection and end-shortening are obtained by two LVDTs. The buckling load is determined from the load vs. strain response, load vs. end-shortening curves, and load vs. out-of-plane deflection curves. The ultimate stress after local buckling is used as the crippling stress. Comparison between finite element and experimental results shows good agreement in the local buckling and crippling stresses.

  • PDF

Stability and P-Δ Analysis of Generalized Frames with Movable Semi-Rigid Joints (일반화된 부분강절을 갖는 뼈대구조물의 안정성 및 P-Δ 해석)

  • Min, Byoung Cheol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.2
    • /
    • pp.409-422
    • /
    • 2013
  • For stability design and P-${\Delta}$ analysis of steel frames with semi-rigid connections, the explicit form of the exact tangential stiffness matrix of a generalized semi-rigid frame element having rotational and translational connections is firstly derived using the stability functions. And its elastic and geometric stiffness matrix is consistently obtained by Taylor series expansion. Next depending on connection types of semi-rigidity, the corresponding tangential stiffness matrices are degenerated based on penalty method and static condensation technique. And then numerical procedures for determination of effective buckling lengths of generalized semi-rigid frames members and P-${\Delta}$ and shortly addressed. Finally three numerical examples are presented to demonstrate the validity and accuracy of the proposed method. Particularly the minimum braced frames and coupled buckling modes of the corresponding frames are investigated.

Half-Scaled Substructure Test for the Performance Evaluation of a Transmission Tower subjected to Wind Load (송전철탑의 내풍안전성 평가를 위한 1/2축소부분구조 실험)

  • Moon, Byoung-Wook;Min, Kyung-Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.5
    • /
    • pp.641-652
    • /
    • 2007
  • In this paper, a half-scaled substructure test was performed to evaluate the buckling and structural safety of an existing transmission tower subjected to wind load. A loading scheme was devised to reproduce the dead and wind loads of a prototype transmission tower, which uses a triangular jig that is mounted on the reduced model to which the similarity law of a half length was applied. As a result of the preliminary numerical analysis carried out to evaluate the stability of a specimen for the design load, is was confirmed that the calculated axial forces of tower leg members were distributed to $80{\sim}90%$ of an admissible buckling load. When the substructured transmission tower was loaded by 270% of its maximum admissible buckling load, it was failed due to the local buckling that is occurred in joints with weak constraints for out-of-plane behavior of leg members. By inspection of load-displacement curves, displacements and strains of members, it is considered that this local buckling was due to additional eccentric force by unbalanced deformation because the time that is reached to yielding stress due to the bending moment is different at each point of a same section.

Stability Analysis of Shear-Flexible and Semi-Rigid Plane Frames (전단변형효과를 고려한 부분강절 평면뼈대구조의 안정성 해석)

  • Min, Byoung Cheol;Min, Dong Ju;Jung, Myung Rag;Kim, Moon Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.1A
    • /
    • pp.9-18
    • /
    • 2011
  • Generally the connection of structural members is assumed as hinge, rigid and semi-rigid connections. The exact tangent stiffness matrix of a semi-rigid frame element is newly derived using the stability functions considering shear deformations. Also, linearized elastic- and geometric-stiffness matrices of shear deformable semi-rigid frame are newly proposed. For the exact stiffness matrix, an accurate displacement field is introduced by equilibrium equation for beam-column under the bending and the axial forces. Also, stability functions considering sway deformation and force-displacement relations with elastic rotational spring on ends are defined. In order to illustrate the accuracy of this study, various numerical examples are presented and compared with other researcher's results. Lastly, shear deformation and semi-rigid effects on buckling behaviors of structure are parametrically investigated.