• Title/Summary/Keyword: 부등침하

Search Result 115, Processing Time 0.029 seconds

Investigation on Differential Settlement Characteristics of the Final Landfill Cover Used SRSL (부등침하 발생 시 SRSL이 적용된 매립지 최종복토층의 침하 특성 검토)

  • Kwon, Oh-Jung;Oh, Myoung-Hak;Cho, Wan-Jei;Park, Jun-Boum
    • Journal of the Korean Geosynthetics Society
    • /
    • v.8 no.4
    • /
    • pp.9-17
    • /
    • 2009
  • This research was intended to verify the stability of landfill final cover using SRSL(Self Recovering Sustainable Liner) with regard to differential settlements due to the degradation of waste and so on in a waste landfill. Numerical analysis was performed using FLAC 2D software program with input parameters based on soil characteristic tests and reference data after the blank was designed in order to represent the decomposition condition of waste. The maximum settlement of landfill cover was calculated to investigate the structural stability of landfill cover with the different condition of settlement width, settlement depth, and number of differential settlements. The allowable maximum deformation rate of SRSL, which was calculated using field permeability tests, was 6 mm. The analysis showed that SRSL was stable in case of a differential settlement width not exceeding 24.5% of total cover width.

  • PDF

Remaining Service Life Estimation Model for Reinforced Concrete Structures Considering Effects of Differential Settlements (부등침하의 영향이 반영된 철근콘크리트 구조물 잔존수명 평가모델)

  • Lee, Sang-Hoon;Han, Sun-Jin;Cho, Hae-Chang;Lee, Yoon Jung;Kim, Kang Su
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.1
    • /
    • pp.133-141
    • /
    • 2020
  • Korea Infrastructure Safety and Technology Corporation (KISTEC) specifies that the safety inspection and precise safety diagnosis of concrete structures shall be conducted in accordance with the 'Special Law on Safety Management of Infrastructure'. The detailed safety inspection and precise safety diagnosis guidelines presented by KISTEC, however, gives only the grade of members and structures, and thus it is impossible to quantify remaining service life (RSL) of the structures and to quantitatively reflect the effect of differential settlements on the RSL. Therefore, this study aims to develop a RSL evaluation model considering the differential settlements. To this end, a simple equation was proposed based on the correlations between differential settlements and angular distortion, by which the angular distortion of structures was then reflected in nominal strengths of structural members. In addition, the effects of the differential settlements on the RSL of structures were analyzed in detail by using the safety diagnosis results of actual concrete structure.

Reliability Analysis of Differential Settlement Using Stochastic FEM (추계론적 유한요소법을 이용한 지반의 부등침하 신뢰도 해석)

  • 이인모;이형주
    • Geotechnical Engineering
    • /
    • v.4 no.3
    • /
    • pp.19-26
    • /
    • 1988
  • A stochastic numerical model for predictions of differential settlement of foundation Eoils is developed in this Paper. The differential settlement is highly dependent on the spatial variability of elastic modulus of soil. The Kriging method is used to account for the spatial variability of the elastic modulus. This technique provides the best linear unbiased estimator of a parameter and its minimum variance from a limited number of measured data. The stochastic finite element method, employing the first-order second-moment analysis for computations of error Propagation, is used to obtain the means, ariances, and covariances of nodal displacements. Finally, a reliability model of differential settlement is proposed by using the results of the stochastic FEM analysis. It is found that maximum differential settlement occurs when the distance between two foundations is approximately same It with the scale of fluctuation in horizontal direction, and the probability that differential settlement exceeds the allot.able vague might be significant.

  • PDF

A Study on Modeling of the Ground Reinforcement under a Pipe Joint Subjected to Differential Settlement (부등침하를 받는 매설관 기초지반 보강 모델링 연구)

  • 손준익;홍성완
    • Geotechnical Engineering
    • /
    • v.7 no.1
    • /
    • pp.33-40
    • /
    • 1991
  • This paper reports the application study of the ground reinforcement under a pipe joint. The soil-reinforcement interaction helps to minimize the stress concentration at joint. The settlement pattern and the earth pressure variation have been evaluated under the pipeline subjected to differential settlement. The pipeline is fixed at one side with the other side set free being loaded with a uniform surface loading. The problem has been studied by means of laboratory model test and flite element technique, and the analysis results are compared for both non-reinforced and reinforced cases to evaluate the effectiveness of the soil reinforcement for restraining the settlement of the pipeline.

  • PDF

Numerical Investigation on Piled Raft Foundation on Sandy Soils (사질토 지반에 시공된 말뚝전면기초의 수치해석연구)

  • Ahn, Tae-Bong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.6
    • /
    • pp.67-72
    • /
    • 2012
  • Finite element method was used to compare un-piled and piled raft foundation behaviors on sandy soils in this study. The soil parameters were estimated from SPT tests of 25 boreholes. Based on these soil parameters, a finite element analysis was conducted on un-piled and piled raft foundations. For the un-piled raft, the normalized settlement parameter for raft sizes of $8m{\times}8m$ and $15m{\times}15m$ ranged from 1.02~1.15 and 0.64~0.81, respectively. The raft thickness affects differential settlement and bending moments, but has little effect on load sharing or maximum settlement. Pile spacing greatly affected the maximum settlement, the differential settlement, the bending moment in the raft, and the load shared by the piles, while the differential settlement, the maximum bending moment and the load sharing are not affected very much by increasing the pile lengths.

Probabilistic Study of Surface Subsidence due to the Collapse of Underground Void during Earthquakes (지진에 따른 지하공동의 붕괴로 인한 지표면 함몰에 대한 확률론적 연구)

  • Kim, Young Soo;Lee, Chin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.4
    • /
    • pp.217-226
    • /
    • 1993
  • This study is related to the surface subsidence due to the collapse of a underground void during earthquakes. The amount of the settlement due to the collapse of a underground void will depend on the depth of the void, the initial condition of unit weight of sand, the size and type of foundation, the strength of earthquake, the size of a void, etc. The purpose of the paper is to estimate the amount of the subsidence, analyse the factors affecting the subsidence, and develop a program determining the probability of the damages to structures in terms of absolute and differential settlement and rotational settlement. On the base of the results obtained in this study, when the depth of a void is constant and the width of the void increases, the change of the subsidence factor due to the angle of internal friction and the actual effective factor of the void become smaller than that due to the unit weight of sand deposits. In the same condition, the probabilities of damages due to the absolute and differential settlement increase, and those due to the rotational settlement decrease.

  • PDF

Practical Design of the Sandmat Considering Consolidation Settlement Properties (연약지반의 침하특성을 고려한 샌드매트의 실용적 설계를 위한 고찰)

  • Lee, Bongjik;Kwon, Youngcheul;Lee, Jongkyu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.5
    • /
    • pp.31-38
    • /
    • 2007
  • The practical design method on sandmat uses a drain length, rate of consolidation settlement and permeability of sand as a major design factors. And, on the basis of this design process, it has been installed beneath the embankment with same thickness. However, the possibility the underestimation on the thickness of sandmat and the delayed drain have been pointed out by several authors caused by a differential settlement at the center and the end of embankment. In this study, therefore, the effect of the differential settlement on the thickness of sandmat and delayed drain through the numerical analysis of embankment was analyzed. As a result, a substantial sandmat thickness becomes small and the possibility of the delayed drain can be certified because of the development of differential settlement at the center and ends of embankment. As a countermeasure to overcome this problem, the applicability of the mound type sandmat was also investigated by the numerical method. It can be concluded that it maintains the designated substantial sandmat thickness throughout consolidation process, and is useful method to maintain the drain capacity. Especially, the mound type sandmat is effective method for a construction site where can cause a differential settlement such as embankment. Furthermore, it has to be designed on the basis of the accurate prediction of consolidation settlement as well as rate of consolidation settlement, drain length and permeability of sand.

  • PDF

Numerical Modeling of Soil-Reinforcement Interaction Under a Buried Pipeline (매설관 하부지반-보강재 상호작용의 수치모델 연구)

  • 손준익;정하익
    • Computational Structural Engineering
    • /
    • v.4 no.3
    • /
    • pp.129-135
    • /
    • 1991
  • This paper reports the application study of the ground reinforcement under a buried pipeline subjected to differential settlement via a finite element modeling. The soil-reinforcement interaction helps to minimize the differential settlement between the adjoining pipe segments. The settlement pattern and deformation slope of a pipeline have been evaluated for a boundary condition at the joint between a rigid structure and a pipeline. The analysis results are compared for both non-reinforced and reinforced cases to numerically evaluate the stress transfer mechanism and the effectiveness of the soil reinforcement for restraining the settlement of the pipeline.

  • PDF