DOI QR코드

DOI QR Code

Remaining Service Life Estimation Model for Reinforced Concrete Structures Considering Effects of Differential Settlements

부등침하의 영향이 반영된 철근콘크리트 구조물 잔존수명 평가모델

  • 이상훈 (서울시립대학교, 건축공학과) ;
  • 한선진 (서울시립대학교, 건축공학과) ;
  • 조해창 (드림구조 기업부설연구소) ;
  • 이윤정 (서울시립대학교, 건축공학과) ;
  • 김강수 (서울시립대학교, 건축공학부)
  • Received : 2020.01.03
  • Accepted : 2020.02.07
  • Published : 2020.02.29

Abstract

Korea Infrastructure Safety and Technology Corporation (KISTEC) specifies that the safety inspection and precise safety diagnosis of concrete structures shall be conducted in accordance with the 'Special Law on Safety Management of Infrastructure'. The detailed safety inspection and precise safety diagnosis guidelines presented by KISTEC, however, gives only the grade of members and structures, and thus it is impossible to quantify remaining service life (RSL) of the structures and to quantitatively reflect the effect of differential settlements on the RSL. Therefore, this study aims to develop a RSL evaluation model considering the differential settlements. To this end, a simple equation was proposed based on the correlations between differential settlements and angular distortion, by which the angular distortion of structures was then reflected in nominal strengths of structural members. In addition, the effects of the differential settlements on the RSL of structures were analyzed in detail by using the safety diagnosis results of actual concrete structure.

한국시설안전공단에서는 '시설물의 안전관리에 관한 특별법'에 따라 철근콘크리트 구조물의 안전점검 및 정밀안전진단을 실시하도록 제시하고 있다. 그러나 한국시설안전공단 안전점검 및 정밀안전진단 세부지침의 평가방법에서는 평가결과를 등급으로 제시하기 때문에 구조물의 잔존수명을 알 수 없으며 부등침하가 구조물의 잔존수명에 미치는 영향을 반영하지 못한다. 따라서, 이 연구에서는 부등침하의 영향이 반영된 구조물의 잔존수명 평가모델을 제시하고자 하였다. 부등침하와 각 변위의 상관관계를 나타내는 기존의 연구를 바탕으로 부재의 공칭강도에 부등침하의 영향을 반영시키기 위한 식을 제시하였으며, 실제 철근콘크리트 구조물의 현장데이터를 활용하여 부등침하가 구조물의 잔존수명에 미치는 영향을 분석하였다.

Keywords

References

  1. ACI 201.2R-08, Guide to Durable Concrete (2008), ACI Manual of Concrete Practice, Part 7: Materials and General Properties of Concrete, Detroit, Michigan, USA, 41.
  2. Banon, G. (1981), Distinction between several subsets of fuzzy measures, Fuzzy Set and Systems, 5(3), 291-305. https://doi.org/10.1016/0165-0114(81)90057-9
  3. Bjerrum L. (1963), Discussion on Section 6, Europe, Conference on Soil Mechanics and Foundation Engineering, Wiesbaden, 2, 135-137.
  4. Cho, H. C., Lee, D., Ju, H., Kim, K. S., Kim, K. and Monteiro, P. (2015), Remaining service life estimation of reinforced concrete buildings based on fuzzy approach, Computers and Concrete, 15(6), 879-902. https://doi.org/10.12989/cac.2015.15.6.879
  5. Cho, H. C., Ju, H., Oh, J. Y., Lee, K. J., Hahm, K. W. and Kim, K. S. (2016), Estimation of Concrete Carbonation Depth Considering Multiple Influencing Factors on the Deterioration of Durability for Reinforced Concrete Structures, Advances in Material Science and Engineering, 2016(Article ID 4814609) 1-18.
  6. Cho, H. C. (2017), Remaining Service Life Estimation of Concrete Structures Using Neuro-Fuzzy Theory, Ph. D. Dissertation, University of Seoul.
  7. Choquet, G. (1954). Theory of capacities. In Annales de l'institut Fourier (Vol. 5, pp. 131-295).
  8. Murofushi, T., & Sugeno, M. (2000). Fuzzy measures and fuzzy integrals. Fuzzy Measures and Integrals: Theory and Applications, 3-41.
  9. International Code Council(2012), International Building Code 2012, ICC, 569-585.
  10. Jang, J. S. R., Sun, C. T., & Mizutani, E. (1997). MATLAB curriculum series. Neuro-fuzzy and soft computing: a computational approach to learning and machine intelligence., xxvi-614.
  11. Jeong, J. H., Kim, J. O., Kim, J. M., Kim, Y. S. and Cho, C. H. (1995), A Study on the Stress Analysis of Structures Subjected to Differential Settlement, Journal of Architectural Institute of Korea Structure and Construction, 15(2), 479-482.
  12. JSCE(1995), Durability Design Guide of Concrete Structures, Japan Society of Civil Engineers.
  13. Kim, Y. M., Kim, C. K. and Hong, S. G. (2006), Fuzzy Based State Assessment for Reinforced Concrete Building Structures, Engineering Structures, 29(9), 1286-1297.
  14. Korea Concrete Institute(2009), Design Specifications for Concrete Structures, 66.
  15. Safety, K. I. Technology Corporation (KISTC), 2017. Detailed Guidelines for Safety Inspection and Precision Safety Diagnosis.
  16. Macqueen, J. B. (1967), Some Methods for classification and Analysis of Multivariate Observations, Proceedings of 5th Berkeley Symposium on Mathematical Statics and Probability, University of California Press, 281-297.
  17. Ministry of Land, Infrastructure and Transport(2012), Facility maintenance guidelines.
  18. Ministry of Land, Infrastructure and Transport(2016), Special Act on the Safety Control of Public Structures.
  19. Nowak, A. S., & Szerszen, M. M. (2003). Calibration of design code for buildings (ACI 318): Part 1-Statistical models for resistance. ACI Structural Journal, 100(3), 377-382.
  20. Skempton, A. W., & MacDonald, D. H. (1956). The allowable settlements of buildings. Proceedings of the Institution of Civil Engineers, 5(6), 727-768. https://doi.org/10.1680/ipeds.1956.12202
  21. Szerszen, M. M., & Nowak, A. S. (2003). Calibration of design code for buildings (ACI 318): Part 2-Reliability analysis and resistance factors. ACI Structural Journal, 100(3), 383-391.