• Title/Summary/Keyword: 부공진주파수

Search Result 179, Processing Time 0.024 seconds

Design of a MIMO Antenna Using a RF MEMS Element (RF MEMS 소자를 이용한 MIMO 안테나 설계)

  • Lee, Won-Woo;Rhee, Byung-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.12
    • /
    • pp.1113-1119
    • /
    • 2013
  • In this letter, a new approach is proposed for the design of a multi antenna for MIMO wireless devices. The proposed antenna covers various LTE(Long Term Evolution) service bands: band 17(704~746 MHz), band 13(746~787 MHz), band 5(824~894 MHz), and band 8(880~960 MHz). The proposed main antenna consists of a conventional monopole antenna with an inverted L-shaped slit for wideband operation. The proposed the LTE sub antenna is based on a switch loaded loop antenna structure, with a resonance frequency that can be controlled by capacitance of a logic circuit. The tuning technique for the LTE Rx antenna uses a RF MEMS(Micro-Electro mechanical system) to match the impedances to realize the bands of interest. Because the two proposed antennas are polarized orthogonally to each other, the ECC(Envelope Correlation Coefficient) characteristic between two antennas was measured to be very low (below 0.06) with an isolation characteristic below -20 dB between the two antennas in the operating overall LTE bands. The proposed antenna is particularly attractive for mobile devices that integrate LTE multiple systems.

Characteristics comparison of food parallel type high frequency resonant inverter by driving signal control method (구동신호 제어기법에 의한 부하병렬형 고주파 인버터의 특성비교)

  • 이봉섭;원재선;김동희
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.1
    • /
    • pp.94-102
    • /
    • 2003
  • This paper describes the load parallel type full-bridge high frequency resonant inverter can be used as power source. Output control method of proposed circuit is compared with pulse frequency modulation(PFM), pulse width modulation(PWM) and pulse phase variation(Phase-Shift). The analysis of the proposed circuit is generally described by using the normalized parameters. The principle of basic operating and the its characteristics are estimated according to the parameters such as switching frequency(${\mu}$), pulse width($\theta$d) the variation of phase angle($\phi$) by three driving signal patterns. Experimental results are presented to verify the theoretical analysis result. In future, Characteristics by three driving signal control method is provided as useful data in case of output control of a power supply in various fields as induction heating application, DC-DC converter etc.

Design and Implementation of Fuzzy-based Algorithm for Hand-shake State Detection and Error Compensation in Mobile OIS Motion Detector (모바일 OIS 움직임 검출부의 손떨림 상태 검출 및 오차 보상을 위한 퍼지기반 알고리즘의 설계 및 구현)

  • Lee, Seung-Kwon;Kong, Jin-Hyeung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.8
    • /
    • pp.29-39
    • /
    • 2015
  • This paper describes a design and implementation of fuzzy-based algorithm for hand-shake state detection and error compensation in the mobile optical image stabilization(OIS) motion detector. Since the gyro sensor output of the OIS motion detector includes inherent error signals, accurate error correction is required for prompt hand-shake error compensation and stable hand-shake state detection. In this research with a little computation overhead of fuzzy-based algorithm, the hand-shake error compensation could be improved by quickly reducing the angle and phase error for the hand-shake frequencies. Further, stability of the OIS system could be enhanced by the hand-shake states of {Halt, Little vibrate, Big vibrate, Pan/Tilt}, classified by subdividing the hand-shake angle. The performance and stability of the proposed algorithm in OIS motion detector is quantitatively and qualitatively evaluated with the emulated hand-shaking of ${\pm}0.5^{\circ}$, ${\pm}0.8^{\circ}$ vibration and 2~12Hz frequency. In experiments, the average error compensation gain of 3.71dB is achieved with respect to the conventional BACF/DCF algorithm; and the four hand-shake states are detected in a stable manner.

Correlation between Storm Waves and Far-Infra-Gravity Waves Observed in kkye Harbor (옥계항에서 관측된 폭풍파와 저중력파의 상호관계)

  • 정원무;채장원;박우선;이광수;서경덕
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.13 no.3
    • /
    • pp.209-229
    • /
    • 2001
  • Simultaneous field measurements of short-period and long-period waves were made at five stations inside or outside Okkye Harbor, which is located in the east coast of Korea. Based on the measured data, spacial and temporal variations of the long-period wave energy were examined. Three smoothing methods were examined for the spectral estimates: fixed interval averaging method, incremental interval averaging method, and moving averaging method. It was shown that a proper smoothing method should be chosen depending on the period of first resonant mode and the length of data being used. By comparing the results obtained using the long-term data with those obtained using two-day data, we showed that it is necessary to analyze the data of calm seas and storm seas separately. The Helmholtz resonant period in Okkye Harbor was found to be about 9.6 minutes with its relative amplification ratio of 9 to 10, and local amplifications were apparent at the periods of 1.2 to 1.3 minutes and 0.7 minute. During calm seas, both at the harbor entrance and inside the harbor the energy of the waves of 9 minutes or longer period was larger than the infra-gravity wave energy by more than 100 times. However, during storm seas the energy level was very high all over the period band, and local amplification was larger than that during calm seas by more than 100 times, especially inside the harbor, Finally it was shown that the energies of the Helmholtz resonant mode and the infra-gravity waves of 1 to 2 minutes are proportional to the storm wave height.

  • PDF

Development of High-performance Microwave Water Surface Current Meter for General Use to Extend the Applicable Velocity Range of Microwave Water Surface Current Meter on River Discharge Measurements (전자파표면유속계를 이용한 하천유량측정의 적용범위 확장을 위한 고성능 범용 전자파표면유속계의 개발)

  • Kim, Youngsung;Won, Nam-Il;Noh, Joonwoo;Park, Won-Cheol
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.8
    • /
    • pp.613-623
    • /
    • 2015
  • To overcome the difficulties of discharge measurements during flood season, MWSCM(micowave water surface current meter) which measures river surface velocities without contacting water has been applied in field work since its development. The existing version of MWSCM is for floods so that its applicability is low due to the short periods of floods. Therefore the renovative redesign of MWSCM to increase the applicability was conducted so that it can be applied to the discharge measurements during normal flows as well as flood ones by extending the measurable range of velocity. A newly developed high-performance MWSCM for general use can measure the velocity range of 0.03-20.0 m/s from flood flows to normal flows, whereas MWSCM for floods can measure the velocity range of 0.5-10.0 m/s. The improvement of antenna isolation between transmitter and receiver to block the inflow of transmitted singals to receiver and the improvement of phase noise of oscillator are necessary for detecting low velocity with MWSCM technology. Separate type antenna of transmitting and receiving signals is developed for isolation enhancement and phase locked loop synthesizer as an oscillator is applied to high-performance MWSCM for general use. Microwave frequency of 24 GHz is applied to the new MWSCM rather than 10 GHz to make the new MWSCM small and light for convenient use of it at fields. Improvement requests on MWSCM for floods-stable velocity measurement, self test, low power consumtion, and waterproof and dampproof-from the users of it has been reflected on the development of the new version of MWSCM.

Wideband Colpitts Voltage Controlled Oscillator with Nanosecond Startup Time and 28 % Tuning Bandwidth for Bubble-Type Motion Detector (나노초의 발진 기동 시간과 28 %의 튜닝 대역폭을 가지는 버블형 동작감지기용 광대역 콜피츠 전압제어발진기)

  • Shin, Im-Hyu;Kim, Dong-Wook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.11
    • /
    • pp.1104-1112
    • /
    • 2013
  • This paper presents a wideband Colpitts voltage controlled oscillator(VCO) with nanosecond startup time and a center frequency of 8.35 GHz for a new bubble-type motion detector that has a bubble-layer detection zone at the specific distance from itself. The VCO circuit consists of two parts; one is a negative resistance part with a HEMT device and Colpitts feedback structure and the other is a resonator part with a varactor diode and shorted shunt microstrip line. The shorted shunt microstrip line and series capacitor are utilized to compensate for the input reactance of the packaged HEMT that changes from capacitive values to inductive values at 8.1 GHz due to parasitic package inductance. By tuning the feedback capacitors which determine negative resistance values, this paper also investigates startup time improvement with the negative resistance variation and tuning bandwidth improvement with the reactance slope variation of the negative resistance part. The VCO measurement shows the tuning bandwidth of 2.3 GHz(28 %), the output power of 4.1~7.5 dBm and the startup time of less than 2 nsec.

Compact Open-stub Band-pass Filter with Narrow Bandwidth Using Impedance Mismatching of the Transmission- line (전송선로의 임피던스 부정합을 이용한 협대역 개방형 소형 스터브 대역통과 여파기)

  • Yoon, Ki-Cheol;Oh, Seung-Yeon;Oh, Kyoung-Min;Lee, Hyun-Wook;Hong, Tae-Ui;Lee, Jong-Chul
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.7 no.6
    • /
    • pp.38-47
    • /
    • 2008
  • In this paper, the narrow band-pass filter with compact-size using the ${\lambda}g/2$ open stubs is proposed. The filter size is reduced by realization of transmission line at second harmonics and at the same time the power can be transferred to the output by using the fundamental wave generated in the resonator and the transmission line in which the impedance mismatch technique is adopted. Thus, the proposed filter can be reduced to half-length of horizontal transmission line than the conventional one. The experimental results show that insertion loss is 1.58 dB and return loss is 9.86 dB, and the fractional bandwidth is 10 % at the center frequency of 5.8 GHz. The filter size is $10.34{\times}18.56\;mm2$.

  • PDF

Geoacoustic Model of Coastal Bottom Strata at Jeongdongjin in the Korean Continental Margin of the East Sea (동해 한국대륙주변부 정동진 연안 지층의 지음향 모델)

  • Ryang, Woo-Hun;Kim, Seong-Pil;Kim, Dae-Choul;Hahn, Jooyoung
    • Journal of the Korean earth science society
    • /
    • v.37 no.4
    • /
    • pp.200-210
    • /
    • 2016
  • Geoacoustic modeling is used to predict sound transmission through submarine bottom layers of sedimentary strata and acoustic basement. This study reconstructed four geoacoustic models for sediments of 50 m thick at the Jeongdongjin area in the western continental margin of the East Sea. Bottom models were based on the data of the highresolution air-gun seismic and subbottom profiles (SBP) with sediment cores. P-wave speed was measured by the pulse transmission technique, and the resonance frequency of piezoelectric transducers was maintained at 1MHz. Measurements of 42 P-wave speeds and 41 attenuations were fulfilled in three core sediments. For actual modeling, the P-wave speeds of the models were compensated to in situ depth below the sea floor using the Hamilton method. These geoacoustic models of coastal bottom strata will be used for geoacoustic and underwater acoustic experiments reflecting vertical and lateral variability of geoacoustic properties in the Jeongdongjin area of the East Sea.

A New QRS Detection Algorithm Using Index Function Based on Resonance Theory (Resonace theory에 기반을 둔 index function을 통한 새로운 QRS 검출 알고리즘)

  • Lee, Jeon;Yoon, Hyung-Ro;Lee, Kyung-Joong
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.2
    • /
    • pp.107-112
    • /
    • 2003
  • This paper describes a new simple QRS detection algorithm using index function based on resonance theory. The ECG signal can be modeled with several sinusoidal pulses and its first difference has some relations with the amplitude and frequency of sinusoidal pulse. Based on above fact, an index function, similar to the square of the imaginary part of a simple R-L-C circuit, was designed. A QRS complex is detected by applying the adaptive method to the response of index function. The algorithm showed a performance comparable to or higher than the other algorithms. Because it does not require any complicated preprocessing or postprocessing, it can be implemented in real time.

Analysis of the Effect of Small-Bore Piping Resonance Frequency on Defect of Welding Area (용접부의 결함이 소구경배관의 공진 주파수에 미치는 영향 분석)

  • Yoon, Min Soo;Song, Ki O;Lee, Jae Min;Ha, Seung Woo;Cho, Sun Young
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.5
    • /
    • pp.9-14
    • /
    • 2018
  • The piping system of a nuclear power plant plays a role of transferring high energy fluid to equipment and various devices. The safety and soundness of these piping systems are very closely related to the operability of the power plant. In the case of a welded part of a small diameter pipe, it may grow as a microcrack due to a lack of penetration, and it may grow to a size that affects the safety of the pipe due to the influence of mechanical vibration and fatigue load. Resonance refers to an increase in energy as the natural frequency of an object coincides with the frequency applied to the external force. When this resonance occurs, the frequency is the resonance frequency. In this study, when defects exist in the welds of small diameter pipe, the natural frequency of the pipe changes and resonance may occur. Since these resonances are likely to cause fatigue damage to the piping, resonance frequency changes due to the size and shape of the defects are analyzed and evaluated. As a result of the vibration test, the resonance frequency tended to decrease as the depth of the defect deepened, and the influence was larger when the defect existed at the bottom of the top of the trough. Also, it was confirmed that the Transverse cracks had an effect on the resonance frequency in the presence of the cracks in the weld bead, compared to the longitudinal cracks. As a result of this study, it is expected that the cause of the defect and the condition of the pipe can be monitored because the resonance frequency tendency according to the shape of the crack is analyzed.