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Abstract : This paper describes a new simple QRS detection algorithm using index function based on resonance theory. The
ECG signal can be modeled with several sinusoidal pulses and its first difference has some relations with the amplitude and
‘requency of sinusoidal pulse. Based on above fact, an index function, similar to the square of the imaginary part of a simple
R-L-C circuit, was designed. A QRS complex is detected by applying the adaptive method to the response of index function.
“he algorithm showed a performance comparable to or higher than the other algorithms. Because it does not require any
omplicated preprocessing or postprocessing, it can be implemented in real time.
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INTRODUCTION

A good performance of an automatic ECG diagnostic
«ysten depends highly upon the accurate and reliable de—
tection of the QRS complex. There are many methods
employed for QRS complex detection to get a good and
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stable performance, despite the morphological variety and
several types of noise that these complexes could have.
The methods for QRS detection can generally be divi-
ded into three categories : nonsyntactic, syntactic and hy-
brid. The methods based on syntactic are time-consum-—
ing, due to the need for grammar inference for each class
of patterns. So, most of the applicable QRS detectors are
nonsyntactic. But, the implementations of these techniques
also have trouble with manipulating the noise, such as
baseline drift, motion artifacts, power-line interference,
etc. A nonsyntactic method is accomplished by mainly
observing the amplitude of filtered signal, first (or se-
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cond) order derivative signal or both of them[ll. To im-
prove the performance, Laguna et al. studied about an
adaptive threshold which changes depending on a heart
rate[2]. Recently, many hybrid algorithms using wavelet
transform or neural network have been developed and
shown significant improvement[3-61.

Recent algorithms are so complicated, time-consuming
and expensive, however, that is why a simple but reliable
algorithm is needed for the realization on a logical hard-
ware or micro-processor. So, in this paper, we proposed a
new algorithm which detects QRS complex by detecting a
symmetric pulse corresponding to the QRS complex using
resonance theory.

It can be simply implemented and detect QRS complex
as specialists do, that is, it finds a QRS complex, within
a signal segment of QRS frequency range, using the in-
formation of relative amplitude to neighboring peaks.

METHODS
1. Decomposition of ECG signal

Suppappola et al. modeled ECG with several symmetric
pulses[7]. This implies that the ECG segment can be a-
pproximated by the sum of m symmetric pulses. Let an
ECG segment x(n) which contains P, QRS, and T waves
be represented by equation (1).

x(n) = g} Wdn) k=P, QRS, T (D

where Wp, Worsand Wr mean P, QRS and T wave
of same beat segment, respectively. Then, the estimated

ECG, x(7) can be expressed as equation (2).
.;C\(n) = Wp(?’l)‘*‘ WQRs(n)+ WT(”)
= IZ: SPPi( n) + ]Z SPQst( n) + 2 SPTk( n) (2)

where SPp, SPgrs; and SPp, represent the
symmetric pulses which constitute P, QRS and T wave,
respectively and m is the total number of pulses shown
as m = ml+w»2+m3. Because the decomposed
symmetrical pulses are approximated by sinusoidal pulses,
the symmetrical pulse SP is characterized by equation (3).

SP(z,A,H) = Asin{2zft— 1)} ,0<2zft—)<~x

=0 , otherwise (3)

where 17, A and f are the beginning position,
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Fig. 1. Example of ECG decompostion using sinusoid pulses

amplitude and frequency of SP. Fig. 1 is the example of
intuitive decomposition of ECG using five sinusoidal pul-
ses which were generated by SP. And, The beat segment
is sampled from MIT/BIH database. Finally, the recon-

structed ECG x(#) can be approximated by the sum of
sinusoidal symmetrical pulses. For this case, the NRMSE
(normalized root mean squared error) between original
ECG and reconstructed ECG was 0.15.

2. Resonance and index function

Based on the above description, an ECG segment can
be represented by one major sinusoidal pulse which has
the dominant characteristic frequency of QRS complex
and the other minor sinusoidal pulses. For its major sinu-
soidal pulse which has amplitude A and frequency f, the
difference of two sequent sample points Ax depends both
on amplitude and frequency. And, it is known to be far
from that of P or T wave and noise such as baseline
wandering or power-line interference so that it is widely
used to attenuate low frequency noise and to detect QRS
complex. For this reason, Ax is selected as a parameter
of index function for QRS detection and the proposed
index function is shown in equation (4).

1 2
Ax C) 4)

I{(ax) = (ax L—

where L and C are the parameters related to the curve
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Fig. 2. The characteristic curve of index function

The resonant point at which the index function has the
rin mum value is marked as M

The low bound Ly and I(Ls) which is assigned for all s-
mal-er Ax than the low bound Ly are shown. And, the
detection threshold Ithr and the detection window R whi-
ch the detection threshold determines, are also shown

shape of the index function. The index function, K Ax)
is similar to the square of the imaginary part of a simple
R-L-C seres circuit except that frequency component
is rzplaced by Ax. The value of L and C determine the
characteristic of the index function and the index function
has a minimum value when Ax = 1/ VLC .

In Fig. 2, an example of characteristic curve of an
index function is plotted and the resonant position M and
the low bound, L, are marked. If Ax is smaller than
L, . the index function only gives a fixed value I(L) so
that the effect of small non-QRS components are supp-
ressed.

3. QRS detection algorithm

In order to detect QRS complex, the ECG signal is
preprocessed with a bandpass filter of 1-30 Hz bandwidth
and the first order difference of bandpass filtered signal,
Ax(n) is computed. Then, we find the index function
for QRS detection by selecting initial L and C.

After this, the index function in terms of each Ax(#n)
is computed. When it comes to a QRS complex, the index
function has more than two downward pulses. And, a
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Table 1. The conditions of resonant position M to be

moved adaptively

condition deviation

PQRS(i) < O.SXPQRs(Z'“]_) -5 %

PQRS(i) = 1'5XPQRS(i_l) +5 %
APgrs(1) < 0.7X APgrs(i—1) -5 %
APgrs(d) = 1.3XAPgrs(i—1) +5 %

RR interval = 1.8X previous RR interval | -10 %
Start
3

Read ECG Caleulate the duration @
Bandpass filter Duration>10ms?
Set initial M(L,C) Duration>120ms

|

Calculate [st derivative

[ ——

Calculate the response
of index function

consistently?

Setnew M,
Backward searching

!

Find a max, o
) >¢ in filiered ECG
Find pulse complex
Find the begin and end
point satisfying
1(Ax)<ly, Set new M

Fig. 3. The algorithm flowchart for QRS complex detec-
tion

signal is generated by clipping the part higher than de-
tection threshold, I, from the index function. From this,

a start point of the first downward pulse is defined as a
beginning of a pulse complex and last point of the last
pulse, within general QRS duration range from the start
point, is defined as an end of a pulse complex. Then,
within a pulse complex, the duration between the first
point and last point of complex can be calculated. If the
value of duration is more than an empirical value (10ms),
a QRS complex is assumed to be detected and if it is
more than normal limit of QRS duration (80ms), the pulse
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Fig. 4. The index function to normal, LBBB, RBBB and PVC beats (MIT/BIH database)
(c) RBBB (T118) (d) PVC(T114)

(a) Normal (T100) (b) LBBB (T109)

complex are assumed as a noise. In the meantime, if
there exists a consistence of more than 120ms duration, it
is regarded as a wide QRS complex. And, in filtered
ECG, an R peak is definded as the position of maximum
value while downward pulses are occurred.. The detection
threshold Z,,, and the detection window R whose width

and position depend on Iy, are shown in Fig. 2.

For providing the detection algorithm with adaptivity to
the variation of amplitude of QRS peaks, a resonant point

M needs to be moved based on Table 1, where Pors(y is
the peak of i th QRS and APgrs(4) is the i th average
peak of the previous eight beats. In general, for applying

o] 783 %)« Aj247, A23, 2003

an adaptive threshold method, when one of first four
conditions in Table 1 occurs, a threshold is lowered or
made higher by 20%. And, when fifth condition occurs, it
is lowered by 50%. Then, a backward searching is
followed. Similarly, when any condition is satisfied, M is
adaptively changed.

The percentages in deviation column mean that the
resonant point needs to be moved by the amount of the
product of current resonant point and deviation percentage
for each condition. Especially, in the case of the fifth
condition, backward detection is additionally performed. The
algorithm flowchart for QRS dectection is shown in Fig. 3.
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Fig. 5. Examples of the index function for tracing
T222(a) and T203(b) of MIT/BIH databases. Lower
rraces are ECG signals with baseline wander and high
frequency noise. Upper traces are the responses of the
index function

RESULTS AND DISCUSSION

The index function has some merits in QRS complex
detection because its curve has different slopes in the left
and right sides of the resonant point(Fig. 2). First, con-
cerning the steep slope on the left side, although some
Lrx values of non QRS complex are close to the left of
the detection window, the index function are higher than
that of Ax within a detection window so that QRS
complex and non QRS complex can be distinguished de-
finitely. That is, even if two Ax values each corres-
ponding to P (or T) wave and QRS complex have only a
little difference, the response of these would be relatively
more different. Secondly, for the dull slope on the right
side. in the event that the range of Ax values that co-
rresponds to QRS complex is changed by a sudden in-

Table 2. The performance of the QRS detection algori-
thm (FP : False Positive, FN : False Negative)

Record <g§;2> D(it:;ttse)d PN
T100 2273 2273 100.000 %
T1056 2572 2620 51 3 97.900 %
T109 2832 2527 - 5  99.802 %
T112 2539 2541 2 99.920 %
T114 1879 1879 100.000 %
T123 1518 1518 100.000 %
Ti24 1819 1620 1 99.938 %
T200 2601 2608 7 99.731 %
T203 2980 2999 72 53  95.805 %
T205 2656 2649 99.736 %
T208 2955 2953 7 99.459 %
T209 3004 3024 20 99.334 %
T210 2650 2669 13 4  99.358 %
T214 2261 2266 99.779 %
To22 2483 2486 4 1 99.799 %
1223 2605 2607 4 2 99.770 %
T228 2063 2098 52 7 97.126 %
T233 3079 3084 6 1 99773 %
Total 44259 44411 244 92 99.241 %

crease in the QRS complex amplitude, the response of the
enlarged QRS complex would be so similar to the res-
ponse of the previous one that this QRS complex could
also be detected by the same detection window and thre-
shold. For QRS detection in MIT/BIH database which has
11-bit resolution over a 10 mV range, the index function
was experimentally designed to initially have the mini-
mum when Ax = 17 and both L and C were set at
0.0588 for it. For MIT/BIH database, this is an approxi-
mate median value of the first derivative at the beginnig
of various R waves.

Then, by the adaptive rule as mentioned in Table 1, L
and C were equally varied and it caused the resonant
point M to be moved as much as shown in the deviation
column.

To verify the usefulness of the index function in QRS
detection, the index function of Fig. 2 was applied to the
different arrhythmia patterns in MIT/BIH database, and
four examples of their results are plotted in Fig. 4.

The upper panel of Fig. 4(a) is the original ECG of
T100 which is annotated as normal beat, and the lower
panel is the index function. Figs. 4(b)-(d) are the original

J. Biomed. Eng. Res: Vol. 24, No. 2, 2003
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ECGs annotated as LBBB, RBBB, PVC and their res-
ponses. Note that low frequency noise did not affect the
response, and their responses also show different shapes
and widths for four different patterns. Since each res-
ponse shows a shape of downward pulse-complex at the
QRS complex, QRS complex can be recognized whenever
the amplitude of downward pulse complex is lower than
the detection threshold I,.

Fig. 5 shows examples of ECG signal(T222 and T203)
and their corresponding responses. As shown in Fig. 5(a),
it shows an excellent QRS detection for ECG signals
which are infected with baseline wandering and noises of
small magnitude and high frequency. On the contrary, we
can see the false detection when an ECG signal is mixed
with a noise of large magnitude and high frequency such
as that in Fig. 5(b).

The eighteen records were chosen from MIT/BIH ar-
rhythmia database, and this algorithm was applied to
these. In Table 2, the results of QRS detection are listed.
False positive beats were chiefly brought out under the
condition that the T wave of R-on-T type PVC covers a
wide range. Also, the ECG signal infected with the large
amplitude and high frequency noise produced false posi-
tive beats. On the other hand, false negative beats are
detected when Ax(#) is extremely smaller than the es-
timated typical value of M. An ECG signal with a noise
of small magnitude and high frequency can be ignored,
because this algorithm depends on the gradient of ECG
signal. And, if a high frequency signal has a large
magnitude, but is not distributed as wide as a normal
QRS width, it will be regarded as noise. The results
showed a comparable or higher performance, compared
with other algorithms[1],[8].

Generally, a nonsyntactic algorithm should incorporate
complicated filtering techniques essentially and a syntactic
or hybrid algorithm, such as wavelet transform, fuzzy
logic inference, neural network or mixed method, is
time-consuming and expensive. However, this algorithm
just includes first order bandpass filtering, calculation of
first derivative, computation of the index function for the
input of first derivativ and check of the response with
detection rule and adaptive modification of M, not any
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complicated preprocessing or postprocessing. So, it can be
implemented in real time and available for the hardware

or micro-processor realization.
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