A New QRS Detection Algorithm Using Index Function Based on Resonance Theory

Resonace theory에 기반을 둔 index function을 통한 새로운 QRS 검출 알고리즘

  • Lee, Jeon (Dept. of Biomedical Eng., College of Health Science, Yonsei University and Research Institute of Medical Engineering) ;
  • Yoon, Hyung-Ro (Dept. of Biomedical Eng., College of Health Science, Yonsei University and Research Institute of Medical Engineering) ;
  • Lee, Kyung-Joong (Dept. of Biomedical Eng., College of Health Science, Yonsei University and Research Institute of Medical Engineering)
  • 이전 (연세대학교 보건과학대학 의공학과) ;
  • 윤형로 (연세대학교 보건과학대학 의공학과) ;
  • 이경중 (연세대학교 보건과학대학 의공학과)
  • Published : 2003.04.01

Abstract

This paper describes a new simple QRS detection algorithm using index function based on resonance theory. The ECG signal can be modeled with several sinusoidal pulses and its first difference has some relations with the amplitude and frequency of sinusoidal pulse. Based on above fact, an index function, similar to the square of the imaginary part of a simple R-L-C circuit, was designed. A QRS complex is detected by applying the adaptive method to the response of index function. The algorithm showed a performance comparable to or higher than the other algorithms. Because it does not require any complicated preprocessing or postprocessing, it can be implemented in real time.

본 연구는 공진이론에 기초한 인덱스 함수(index function)를 이용하여 간단하게 QRS를 검출하는 새로운 알고리즘에 관한 것이다 ECG 근 몇 개의 사인파형의 조합으로 모델링 가능하며. 이때 ECG의 일차차분 값은 사인파형의 크기 및 주파수와 관계가 있다. 이 사실에 근거하여, R-L-C 회로의 허수부의 제곱값과 유사한 인덱스함수를 디자인하였으며. 인덱스 함수의 응답에 적응방법(adaptive method)를 첨가하여 QRS를 검출하였다. 이 알고리즘은 다른 QRS 검출 알고리즘에 비해 비슷하거나 높은 검출성능을 보였고. 복잡한 전처리 또는 후처리 과정이 필요치 않으므로 실시간 검출에 유용하게 사용될 수 있을 것이다.

Keywords

References

  1. IEEE Trans. on Biomedical Engineering v.37 no.1 A Comparison of the Noise Sensitivity of Nine QRS Detection Algorithms G. M. Friesen;T. C. Jannett
  2. Med. & Bio. Eng & Comput. New algorithm for QT interval analysis in 24-hour Holter ECG : performance and applications P. Laguna;N. V. Thakor;P. Caminal;R. Jane;H. R. Yoon
  3. IEEE TRans. on Biomedical Engineering v.42 no.1 Detechtion of ECG Characteristic Points Using Wavelet Transforms L. Cuiwe;Z. Chongxun
  4. IEEE Trans. Biomed. Eng. v.43 no.4 Classification of cardiac arrhythmia using fuzzy ARTMAP M. Fredric, et al.
  5. Journal of Electrocatdiology v.26 Diagnostic ECG classification based on neural networks G. Bortolan;J. L. Willems
  6. Med. & Bio. Eng. & Comput. v.39 no.3 Design of a wavelet interpolation filter for enhancement of the ST-segment K. L. Park;M. J. Khil;B. C. Lee;K. S. Jeong;K. J. Lee;H. R. Yoon
  7. Annals of Biomedical Engineering v.25 Gaussian Pulse DEcomposition : An Intuitive Model of Electrocardiogram Waveforms S. Suppappola;Y. Sun;S. A. Chiaramida
  8. IEEE Transactions on Biomedical Engineering v.36 no.10 QRS Feature Extraction Using Linear Prediction K. P. Lin;W. H. Chang