• Title/Summary/Keyword: 부가적 손상

Search Result 87, Processing Time 0.034 seconds

Electrochemical characteristics in water cavitation peening for Al bronze in distilled water (동합금 Water cavitation peening에 의한 전기화학적 특성 연구)

  • Kim, Seong-Jong;Park, Jae-Cheol;Kim, Min-Seong;Han, Min-Su
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2011.05a
    • /
    • pp.79-79
    • /
    • 2011
  • water cavitation peening(WCP)은 water jet 과정으로 인한 cavitation이 발생할 때, 금속표면 cavitation 현상에 의해 재료표면의 잔류응력과 경도 등의 물성을 변화시키게 되며, 그로 인해 생긴 잔류 응력으로 재료의 내구성 및 수명을 향상시키는 기술이다. 최근에는 water jet을 이용한 장치들이 건설 분야, 일반기계분야, 컷팅 공정, 분쇄 등 다양한 분야에서도 사용되고있다. 그러나 water jet을 이용한 peening은 소개 된지 20여년이 경과했음에도 불구하고 연구 및 개발 내용은 shot peening에 비해 아직 초기 단계이다. water cavitation peening은 기존의 피닝 방법의 단점을 보완 할 뿐만 아니라 환경적인 측면에서도 그 가치가 크다. 아직은 다른 peening 기법 보다 잔류압축응력 부가 측면에서 그 효과가 떨어지지만, water cavitation peening은 열에 영향을 받는 영역이 생성되지 않으며, 기계의 표면 가공을 하는 동안 어떤 미세한 먼지도 생성하지 않아 친환경적이다. 또한 복잡한 외형을 가지는 부품 및 내면에 적용성이 뛰어나고, 표면 정밀도 저하가 낮다는 장점이 있다. 본 연구에서는 조류발전용 블레이드의 재료로 사용하려는 동합금에 대하여 증류수 내에서 water cavitation peening 시간, 거리, 파형 등의 변수를 적용하여 최적 조건을 찾고, 다양한 전기화학적 실험을 실시하였으며, water cavitation peening 부의 부식특성을 평가 하였다. ASTM-G32 규정에 의거하여 압전효과를 용한 진동발생 장치(RB 111-CE)를 이용하여 동합금 표면에 water cavitation peening을 실시하고, 실험 후 표면의 손상거동을 관찰하기 위하여 3D현미경 및 전자주사현미경(SEM)을 사용하였다. 물성치 변화를 확인하기 위하여 SHIMADZU사의 HVM-2 Model의 비커스 경도기를 이용하여 표면 경도값을 측정하였다. 전기화학실험은 각 3회 이상 실시하였으며, Tafel 분석결과로 부식전류밀도와 부식전위의 평균, 부식전위를 알 수 있었고, 음분극 실험결과, 용존산소 환원반응에 의한 농도분극에서 수소가스발생에 의한 활성화 분극으로 진행되는 변곡점을 확일 할 수 있었다.

  • PDF

Self-Sensing of Single Carbon Fiber/Carbon Nanotube-Epoxy Composites Using Electro-Micromechanical Techniques and Acoustic Emission (전기적-미세역학시험법과 음향방출을 이용한 단일 탄소섬유/탄소나노튜브-에폭시 나노복합재료의 자체-감지능)

  • Park, Joung-Man;Jang, Jung-Hoon;Wang, Zuo-Jia;Kwon, Dong-Jun;Park, Jong-Kyu;Lee, Woo-Il
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.5
    • /
    • pp.411-422
    • /
    • 2010
  • Self-sensing on micro-failure, dispersion degree and relating properties, of carbon nanotube(CNT)/epoxy composites, were investigated using wettability, electro-micromechanical technique with acoustic emission(AE). Specimens were prepared from neat epoxy as well as composites with untreated and acid-treated CNT. Degree of dispersion was evaluated comparatively by measuring volumetric electrical resistivity and its standard deviation. Apparent modulus containing the stress transfer was higher for acid-treated CNT composite than for the untreated case. Applied cyclic loading responded well for a single carbon fiber/CNT-epoxy composite by the change in contact resistivity. The interfacial shear strength between a single carbon fiber and CNT-epoxy, determined in a fiber pullout test, was lower than that between a single carbon fiber and neat epoxy. Regarding on micro-damage sensing using electrical resistivity measurement with AE, the stepwise increment in electrical resistivity was observed for a single carbon fiber/CNT -epoxy composite. On the other hand, electrical resistivity increased infinitely right after the first carbon fiber breaks for a single carbon fiber/neat epoxy composite. The occurrence of AE events of added CNT composites was much higher than the neat epoxy case, due to micro failure at the interfaces by added CNTs.

The Effects of Magnesium Rich Sea Mineral Water on Atopic Dermatitis-like Skin Lesions in Hairless Mice (마그네슘 풍부 해양미네랄 용액이 hairless 마우스의 아토피성 피부염에 미치는 영향)

  • Kim, Dong-Heui;Lee, Kyu-Jae;Qi, Xu-Feng;Lee, Young-Mi;Yoon, Yang-Suk;Kim, Jeong-Lye;Chang, Byung-Soo;Ryang, Yong-Suk
    • Applied Microscopy
    • /
    • v.38 no.3
    • /
    • pp.167-174
    • /
    • 2008
  • Atopic dermatitis (AD) is a chronically relapsing inflammatory skin disease that often has asthma and allergic rhinitis. Magnesium salts, the important component of minerals in Dead Sea water, are known to exhibit beneficial effects in inflammatory disease. Favorable effects of magnesium ions and sea water treated to the skin of patients with contact dermatitis have been reported. But histological and immunological investigations are insufficient. This study was performed to examine the inhibitory effect of magnesium-rich sea mineral water on the development of AD-like skin lesions in hairless mice. AD-like skin lesions are induced by the repeated application of 2,4-dinitrochlorobenzene (DNCB). Local application of magnesium-rich sea mineral water on hairless mice skin applied with DNCB inhibited the development of AD-like skin lesions as exemplified by a significant increase in skin hydration (p<0.01), and a decrease in epidermal water loss (p<0.01). Serum IgE level was also significantly decreased (p<0.01). These results suggest that magnesium-rich sea mineral water inhibits the development of DNCB-induced AD-like skin lesions in hairless mice. These observations indicate that magnesium-rich sea mineral water may be alternative and assistant substances for the management of AD.

Flaw Evaluation of Bogie connected Part for Railway Vehicle Based on Convolutional Neural Network (CNN 기반 철도차량 차체-대차 연결부의 결함 평가기법 연구)

  • Kwon, Seok-Jin;Kim, Min-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.53-60
    • /
    • 2020
  • The bogies of railway vehicles are one of the most critical components for service. Fatigue defects in the bogie can be initiated for various reasons, such as material imperfection, welding defects, and unpredictable and excessive overloads during operation. To prevent the derailment of a railway vehicle, it is necessary to evaluate and detect the defect of a connection weldment between the car body and bogie accurately. The safety of the bogie weldment was checked using an ultrasonic test, and it is necessary to determine the occurrence of defects using a learning method. Recently, studies on deep learning have been performed to identify defects with a high recognition rate with respect to a fine and similar defect. In this paper, the databases of weldment specimens with artificial defects were constructed to detect the defect of a bogie weldment. The ultrasonic inspection using the wedge angle was performed to understand the detection ability of fatigue cracks. In addition, the convolutional neural network was applied to minimize human error during the inspection. The results showed that the defects of connection weldment between the car body and bogie could be classified with more than 99.98% accuracy using CNN, and the effectiveness can be verified in the case of an inspection.

Study on Landslide Hazard Possibility for Mt. Hwangryeong in Busan Metropolitan City Using the Infinite Slope Model (무한사면 모델을 이용한 부산 황령산 산사태 재해 평가 가능성 검토)

  • Kim, Jae Min;Choi, Jung Chan
    • The Journal of Engineering Geology
    • /
    • v.26 no.3
    • /
    • pp.413-422
    • /
    • 2016
  • With the rapidly increasing population density and development of infrastructure, the loss of life and property damage caused by landslides has increased gradually in urban area. Especially, Because Busan has high percentage of mountainous terrain among the metropolitan in Korea, it is unavoidable to develop mountainous region excessively. The objective of this evaluation is to study on landslide hazard possibility for Mt. Hwangryeong in Busan Metropolitan City using the infinite slope model considering the groundwater level. All data related to creating the thematic maps was carried out using ArcGIS 10.0. The results show that FS (Factor of Safety) for landslide is inversely proportional to groundwater level change as expected. Most area indicates stable state in dry condition, and unstable area increase due to high pore water pressure when the groundwater level rise. However, several places in high lineament density area where landslide has been previously occurred, are more stable than other places according to the analysis. This inconsistency between real situation and analysis results indicates that additional analytical method would be necessary to solve the problem. Therefore, we suggest that development of new infiltration theory for unsaturated zone would be helpful to evaluate groundwater level distribution as time goes by.

Transfer of Genetic Substance Through the Cell Wall of Geranium (Pelargonium zonale hybrids, 'Pinto Scarlet') Callus (제라니움 세포벽을 통한 유전물질의 전이)

  • 유장걸;소인섭;홍경애
    • Korean Journal of Plant Tissue Culture
    • /
    • v.21 no.1
    • /
    • pp.29-34
    • /
    • 1994
  • The possibility that DNA could move out of the single cells isolated from geranium (Pelargonium zonale hybrids, 'PintoScarlet') callus was determined by the elechophoretic DNA analysis after treatment of low pH, various concentrations of KNO$_3$, 2,4-D, and GA$_3$ followed by the centrifugal force, all of which are hewn to and the physico-chemical properties of the cell wall. The centrifugal force of l,800 xg was need for DNA migration after the above treatment, but 7k300 xg was required without the treatments. In this experiment the optimum concentration (300 mg/L) of sodium dodecyl sulfate (SDS) used as an anion detergent to collect the negatively charged DNA was very critical not to damage the cell wall It can be concluded that the centrifugal force played a key role for the DNA migration through the cell wall, and the treatments of low pH (4.0), 0.5% KNO$_3$, 1.5 mg/L GA$_3$and 1mg/L 2,4-D further increased the DNA migration.

  • PDF

A basic study for explosion pressure prediction of hydrogen fuel vehicle hydrogen tanks in underground parking lot (지하주차장 수소연료차 수소탱크 폭발 압력 예측을 위한 기초 연구)

  • Lee, Ho-Hyung;Kim, Hyo-Gyu;Yoo, Ji-Oh;Lee, Hu-Yeong;Kwon, Oh-Seung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.6
    • /
    • pp.605-612
    • /
    • 2021
  • Amid growing global damage due to abnormal weather caused by global warming, the introduction of eco-friendly cars is accelerating to reduce greenhouse gas emissions from internal combustion engines. Accordingly, many studies are being conducted in each country to prepare for the explosion of hydrogen fuel in semi-closed spaces such as tunnels and underground parking lots to ensure the safety of hydrogen-electric vehicles. As a result of predicting the explosion pressure of the hydrogen tank using the equivalent TNT model, it was found to be about 1.12 times and 2.30 times higher at a height of 1.5 meters, respectively, based on the case of 52 liters of hydrogen capacity. A review of the impact on the human body and buildings by converting the predicted maximum explosive pressure into the amount of impact predicted that all predicted values would result in lung damage or severe partial destruction. The predicted degree of damage was applied only by converting the amount of impact caused by the explosion, and considering the additional damage caused by the explosion, it is believed that the actual damage will increase further and safety and disaster prevention measures should be taken.

Two Dimensional Size Effect on the Compressive Strength of Composite Plates Considering Influence of an Anti-buckling Device (좌굴방지장치 영향을 고려한 복합재 적층판의 압축강도에 대한 이차원 크기 효과)

  • ;;C. Soutis
    • Composites Research
    • /
    • v.15 no.4
    • /
    • pp.23-31
    • /
    • 2002
  • The two dimensional size effect of specimen gauge section ($length{\;}{\times}{\;}width$) was investigated on the compressive behavior of a T300/924 $\textrm{[}45/-45/0/90\textrm{]}_{3s}$, carbon fiber-epoxy laminate. A modified ICSTM compression test fixture was used together with an anti-buckling device to test 3mm thick specimens with a $30mm{\;}{\times}{\;}30mm,{\;}50mm{\;}{\times}{\;}50mm,{\;}70mm{\;}{\times}{\;}70mm{\;}and{\;}90mm{\;}{\times}{\;}90mm$ gauge length by width section. In all cases failure was sudden and occurred mainly within the gauge length. Post failure examination suggests that $0^{\circ}$ fiber microbuckling is the critical damage mechanism that causes final failure. This is the matrix dominated failure mode and its triggering depends very much on initial fiber waviness. It is suggested that manufacturing process and quality may play a significant role in determining the compressive strength. When the anti-buckling device was used on specimens, it was showed that the compressive strength with the device was slightly greater than that without the device due to surface friction between the specimen and the device by pretoque in bolts of the device. In the analysis result on influence of the anti-buckling device using the finite element method, it was found that the compressive strength with the anti-buckling device by loaded bolts was about 7% higher than actual compressive strength. Additionally, compressive tests on specimen with an open hole were performed. The local stress concentration arising from the hole dominates the strength of the laminate rather than the stresses in the bulk of the material. It is observed that the remote failure stress decreases with increasing hole size and specimen width but is generally well above the value one might predict from the elastic stress concentration factor. This suggests that the material is not ideally brittle and some stress relief occurs around the hole. X-ray radiography reveals that damage in the form of fiber microbuckling and delamination initiates at the edge of the hole at approximately 80% of the failure load and extends stably under increasing load before becoming unstable at a critical length of 2-3mm (depends on specimen geometry). This damage growth and failure are analysed by a linear cohesive zone model. Using the independently measured laminate parameters of unnotched compressive strength and in-plane fracture toughness the model predicts successfully the notched strength as a function of hole size and width.

Bending Behavior of the Mooring Chain Links Subjected to High Tensile Forces (강한 인장 상태에서의 계류 체인 링크의 휨 거동)

  • Kim, Seungjun;Won, Deok-Hee
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.2
    • /
    • pp.99-110
    • /
    • 2017
  • This paper presents the study of the bending behavior of mooring chain links for keeping the position of the offshore floating structures. In general, chain links have been thought as the axial members due to the fundamental boundary condition. But, the flexural stiffness can be induced to the contact surface between chain links when friction occurs at the surface of the chain links due to high tensile force. Especially, the mooring chains for offshore floating platforms are highly tensioned. If the floater suffers rotational motion and the mooring chain links are highly tensioned, the rotation between contact links, induced by the floater rotation, generates the bending moment and relevant stresses due to the unexpected bending stiffness. In 2005, the mooring chain links for the Girassol Buoy Platform were failed after just 5 months after facility installation, and the accident investigation research concluded the chain failure was mainly caused by the fatigue due to the unexpected bending stress fluctuation. This study investigates the pattern of the induced bending stiffness and stresses of the highly tensioned chain links by nonlinear finite element analysis.

Urine Analysis in Transgenic Mice Expressing the Growth Hormone-releasing Factor (성장호르몬 방출인자를 발현하는 형질전환 생쥐에서 소변분석)

  • Cho, Byung-Nam;Jung, Hoi-Kyung;Yoon, Yong-Dal;Mayo, Kelly-E
    • Development and Reproduction
    • /
    • v.6 no.1
    • /
    • pp.31-35
    • /
    • 2002
  • The major urinary proteins(MUPs) of mice that bind hydrophobic molecules known as pheromones are regulated in part by the actions of growth hormone. The expression of the MUPs was therefore investigated in transgenic mice that express a human growth hormone-releasing factor gene from a metallothionein gene promoter(MT-GRF) and as a result have elevated growth hormone levels. MUPs were severely down-regulated in the urine of these animals compared to normal mice or to control transgenic mice expressing another gene(the inhibin a subunit) from the same metallothionein promoter(MT-Inh) and more MUPs disappeared in male mice than female ones. MUPs were also down-regulated in the urine of the UT-GRF-injected mice. In addition, it was observed that the urine of the MT-GRF mice included a high molecular weight protein that co-migrates with the major serum protein albumin, indicating an impairment in glomerular filtration within the kidney. The urinary loss of serum proteins was more severe in male MT-GRF mice than female ones. Thus the overexpression of human GRF mimics changes observed in MUP protein expression and glomerular function in other models of growth hormone hypersecretion with sex-dependent differential effects.

  • PDF