• Title/Summary/Keyword: 봉

Search Result 6,573, Processing Time 0.031 seconds

Safety regulations and welding manufacturing standards for nuclear power plant and pressure vessel element (原子力發電機器와 壓力容器의 安全 規制 및 熔接에 관한 製作基準에 대하여)

  • 정호신
    • Journal of Welding and Joining
    • /
    • v.9 no.2
    • /
    • pp.1-10
    • /
    • 1991
  • 용접대상으로서 가장 중요한 것은 원자로의 구조재료이며 이것에는 원자력 용기, 중기 탱크, 액 체연료용기, 연료봉 피복, 제어봉피복, 냉각재 도관 및 출력 계통의 각종 도관, 열교환기, 펌프, 밸브 등의 구조재료 및 원자로의 부대 설비로서의 연료 화학처리 과정등에 사용되는 각종 금속 재료가 있다.

  • PDF

당산봉&수월봉 식물상

  • Jeong, Gi-Su;Lee, Seon-Hui;Mun, Seong-Pil;Song, Gwan-Pil
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2020.10a
    • /
    • pp.187-187
    • /
    • 2020
  • PDF

A Study on the Spatial Information and Location Environment of Dead Coniferous Tree in Subalpine Zone in Jirisan National Park -Focus on Korean Fir(Abies koreana) in Banyabong, Yeongsinbong, Cheonwangbong- (지리산국립공원 아고산대 침엽수 고사개체 공간정보 구축 및 입지환경 분석 - 반야봉, 영신봉, 천왕봉 일원 구상나무를 중심으로-)

  • Park, Hong Chul;Moon, Geon Soo;Lee, Ho;Lee, Na Yeon
    • Korean Journal of Environment and Ecology
    • /
    • v.34 no.1
    • /
    • pp.42-54
    • /
    • 2020
  • This study aimed to analyze the rate of increase and spread patterns of dead trees of the conifer (Abies koreana and others) in subalpine zones by using the high-resolution aerial images in Jirisan National Park around 10 years ago. Furthermore, factors affecting the death of conifer were identified by analyzing the altitude, topographical information, solar radiation, and moisture environment of the site where the dead trees are located. The number of dead trees per unit area increased by two to five times in the Banyabong peak, Yeongsinbong peak, and Cheonwangbong peak in Jirisan National Park over the past decade. The increase was about 2 times in the Banyabong peak, about 3.9 times in the Yeongsinbong peak, and about 5.2 times in the Cheonwangbong peak, indicating the most notable increase in the Cheonwangbong peak. It is estimated that dead trees commonly occurred in the environments where the soil moisture content was low due to the high slope, amount of evaporation was high due to strong solar radiation as the location faced south, and the soil was dry due to strong solar radiation and short rain retention time. In other words, dead conifer trees in subalpine zones were concentrated in dry location environments, and the tendency was the same more than ten years ago.

An Expanded Use of Reactor Power Cutback System to Avoid Reactor Trips in the Event of an Inward Control Element Assembly Deviation (제어봉 인입편차시의 원자로 비상정지 방지를 위한 출력 급감발 계통의 확대 적용)

  • Hwang, Hae-Ryong;Ahn, Dawk-Hwan
    • Nuclear Engineering and Technology
    • /
    • v.25 no.2
    • /
    • pp.276-284
    • /
    • 1993
  • The ABB-CE System-80 reactor power cutback system(RPCS) is designed to enable continuous operation of the reactor without trip in the events of the loss of one of the two main feedwater pumps and loss of load, and thus improves plant availability in a cost effective manner. In this study expansion of RPCS has been investigated for continuous reactor operation without trip in the event of an inward control element assembly(CEA) deviation including a single rod drop. Under the expanded function of RPCS the control system will provide a rapid core power reduction on demand by releasing CEAs to drop into the core and reduce the turbine power, if necessary, to follow the reactor power variation. This design feature which is included as the new design features to be incorporated in the ABB-CE System-80+ meets the EPRI advanced light water reactor(ALWR) requirements. For this study core analysis models of System-80+ have been developed to simulate the nuclear steam supply system(NSSS) response as well as the RPCS initiation of rapid CEA insertion. The results of this study demonstrate that the reactor trip can be avoided in the event of inward CEA deviation including a single rod drop by the RPCS initiation and thus the plant availability and capacity factor would be increased.

  • PDF

Examination of Forced Convection Heat Transfer Performance of a Twist-Vane Spacer Grid for a Dual-Cooled Annular Fuel Assembly (이중냉각 환형핵연료 집합체를 위한 비틀림 혼합날개 지지격자의 강제대류열전달 성능 검토)

  • Lee, Chi Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.1
    • /
    • pp.53-62
    • /
    • 2017
  • The forced convection heat transfer performance of a twist-vane spacer grid for a dual-cooled annular fuel assembly was examined experimentally. The twist-vane spacer grid was uniquely designed to enhance mixing inside subchannels and mixing between adjacent subchannels. For testing, a $4{\times}4$ square-arrayed rod bundle with narrow gaps between rods was prepared as the dual-cooled annular fuel assembly to be simulated. The pitch-to-rod diameter ratio of simulated dual-cooled annular fuel assembly was 1.08. The experiments were performed under the following conditions: axial bulk velocity, 1.5 m/s and heat flux, $26kW/m^2$. With regard to the circumferential temperature distribution, the lowest rod-wall temperatures upstream and downstream were measured at the subchannel center and the position toward the tip of twist-vane, respectively. With regard to the axial temperature distribution, behind the twist-vane spacer grid, the rod-wall temperature decreased drastically, and the Nusselt number was enhanced by up to 56 %. The present measured data indicate that the twist-vane spacer grid can effectively improve the forced convection heat transfer in the dual-cooled annular fuel assembly with narrow gaps.

Quality Properties of Hallabong Tangor(Citrus Kiyomi ${\times}$ ponkan) Cultivated with Heating (가온재배한 한라봉감귤의 품질특성)

  • Lee, Sang-Hyup;Kim, Hwa-Sun;Cho, Sung-Won;Lee, Joong-Suk;Koh, Jeong-Sam
    • Food Science and Preservation
    • /
    • v.13 no.5
    • /
    • pp.538-542
    • /
    • 2006
  • Physicochemical properties and positional distribution of Hallabong Tangor (Citrus Kiyomi ${\times}$ ponkan) cultivated in heated greenhouse were investigated. About 90% of Hallabong produce fruit within the range of $250{\sim}400g$ fruit weight on a tree, larger fruits were mainly consisted of $400{\sim}450g$ in M16A, a variant species of Hallabong, due to younger tree and fruit thinning. Nevertheless fruit sizes of M16A were larger than Hallabong, and peel thickness of M16A (3.29 mm) was thinner than that of Hallabong (3.51 mm). Hardness of m6h was 994.69g-force, compared to 832.8 g-force of Hallabong on the average. Soluble solids and acid content of Hallabong were $12.20{\sim}12.98^{\circ}Brix$ and $1.08{\sim}1.14%$, while those of M16A were $1.48{\sim}12.63^{\circ}Brix$ and $0.92{\sim}1.00%$, respectively. Vitamin C content of Hallabong was $71.30{\sim}78.77 mg/100 g$, compared to $64.40{\sim}68.01mg/100g$ in M16A. Soluble solid in the part of stem was lower than that of end part among the same segment. Fruit size in the upper part of the tree was larger, the peel was thicket and flesh ratio was lower than the middle or lower part. However, soluble solids and acid content were high, due to cumulative sunshine during cultivation.

Physicochemical Properties of Hallabong Tangor(Citrus Kiyomi ${\times}$ ponkan) Cultivated with Heating (가온재배한 한라봉 감귤의 성분분석)

  • Kim, Hwa-Sun;Lee, Sang-Hyup;Koh, Jeong-Sam
    • Food Science and Preservation
    • /
    • v.13 no.5
    • /
    • pp.611-615
    • /
    • 2006
  • Physicochemical properties of Hallabong Tangor(Citrus Kiyomi ${\times}$ ponkan) cultivated in Heated greenhouse were investigated. Moisture contents of Hallabong and M16A (a variant species of Hallabong) were 87.42% and 88.12% total sugar were 8.01% and 7.81% and acid content were 1.09% and 0.99% respectively. Vitamin C content of Hallabong was 72.01 mg/100 g that was higher than Citrus unshiu. Potassium content of M16A was 938.33 mg/kg, while Hallabong was 1369.33 mg/kg. The contents of inorganic element in a decreasing order were K > Ca > P > Mg > Na in Hallabong, and K > P > Ca > Mg > Na in Ml6A. Sucrose in Hallabong and M16A were 3.60% and 4.36%, respectively, which is half of total free sugars. Fructose and glucose Hallabong and M16A were 2.22% and 1.90%, 1.94% and 1.65% respectively. Citric acid in Hallabong and M16A was 82.32% and 69.88%, respectively among total organic acids. The content of malic acid was higher in M16A, compared to Citrus unshiu. Hesperidin and narirutin were identified main flavonoids.