• Title/Summary/Keyword: 볼트 접합부

Search Result 162, Processing Time 0.027 seconds

A study on Tensile performance of Energy Absorbing Bolts in Space Frame (스페이스프레임에 사용되는 에너지 흡수형 볼트의 인장성능연구)

  • Lee, Sung-Min;Kim, Min-Sook;Choi, Jung-Sam;Kang, Chang-Hoon
    • Journal of Korean Association for Spatial Structures
    • /
    • v.7 no.6
    • /
    • pp.53-60
    • /
    • 2007
  • The hole for the insertion of the pin in the shank is exist at ball joint connection of the space frame. It brings about the brittle fracture caused by stress concentration. Consequently it cannot expect the deformation performance or energy absorption performance from ball joint connection. In this study we developed a new connection details which will increase the plastic deformation performance at ball joint connection and can absorb the error in construction, which expect the plastic deformation performance at the reduced shank without brittle fracture at the screw of bolt and pin. Also it's capacity is verified by the performance in numerical analysis and test. We confirmed bolt's plastic deformantion performance through controled shank and pin's area.

  • PDF

An Experimental study on the Bolted Moment Connection between H-Beam and CFT Column (CFT기둥과 H-형강보의 볼트 접합부에 관한 실험적 연구)

  • Park, Soon Kyu;Roh, Hawn Kewn
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.4 s.37
    • /
    • pp.789-799
    • /
    • 1998
  • The purpose of this study is to propose the prototypes of bolted end plate moment connection between CFT column and H-beam sections. Nine different types of bolt are designed in this study. The shapes of those bolt are straight. bent, hooked or stud-type. The end plate moment connection between CFT column and H-beam sections which are jointed by those bolts are studied experimentally to compare their performances. The simple beam bending tests are carried out to investigate the structural behavior of beam-to-column connections. The experimental results show that some of the bolted end plate connection types have quite good performance in the structural behavior but still have a lot of week points to be solved for the efficiency of construction.

  • PDF

An Evaluation of Slip Coefficient in High Strength Bolt Joint using Zn/Al Metal Spray Corrosion Resistance Method (Zn/Al 금속용사 방식공법을 적용한 고력볼트 접합부의 미끄럼계수 평가)

  • Kim, Tae-Soo;Lee, Han-Seung;Tae, Sung-Ho;Ahn, Hyun-Jin;Oh, Sang-Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.5
    • /
    • pp.114-122
    • /
    • 2007
  • In high strength bolted joints, the corrosion of base material causes the reduction of slip resistance of the joints. In this study, tensile tests on slip-critical joints utilizing Zn/Al metal spraying corrosion resistance method were carried out in order to prevent the corrosion and meet the required mechanical characteristics of joints. In addition, slip coefficient and surface roughness were calculated. The key parameters were surface finishing condition and thickness of coating with the identical geometry in all specimens. From the results, it is found that the slip coefficient of the joints with coated finish after sand blast treatment as well as those of non-coated joints with only sand blast treatment were similar or superior to 0.45, which is a specification criteria of slip coefficient in friction-typed joints.

Numerical Behavior Analysis for the Various Multiple Bolted Connections (다양한 다중 볼트 접합부의 거동에 대한 수치해석)

  • Kim, Gwang-Chul
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.3
    • /
    • pp.24-29
    • /
    • 2008
  • Numerical analysis model was used to analyse the behaviors of multiple bolted connections. Axial-bending element was supposed as basic model, and the effects of frame members and steel fasteners were classified for the behavior analysis. In the condition only two bolts were used, the traditional analytical methods, which show somewhat accuracy, have some advantages more than numerical analysis that need many time consuming, However, more many bolts were used in practical field condition. Also, it is impossible to analyse the behaviors of various bolts layouts and arrangements conditions by traditional analytical methods. Therefore, there is only numerical analysis method for the accurate behavioranalysis on the practical bolted connection condition. Therefore, numerical analysis method was applied on the various multiple bolted connections. On the result exactness and the reflection of connection condition, numerical analysis method showed the superiority more than widely used traditional empirical analysis methods as yield model.

An Experimental Study on the Behavior of Beam-to-Column Joints for Modular Steel Frame (해체.조립식 모듈러 철골조 기둥-보 접합부의 거동에 관한 실험적 연구)

  • Zheng, Sheng-Lin;Kang, Joo-Won;Park, Sung-Moo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.8 no.1
    • /
    • pp.89-97
    • /
    • 2008
  • The object of this paper is to evaluate on behavior the experimentally of beam-to-column joints for modular steel frame with the hollow structural steel section to LEB C-shape. Beam-to-column joints carried out test on the joint shape bracket-type and welded-type to consideration which the joints for modular steel frame was capacity, deformation and failure mode. Test of results, the beam-column joints decided to the lateral buckling strength in LEB C-shape regardless of joint-shape and joint failure. The strength & stiffness for joints increase as the bracket-thickness. The results from theory of lateral buckling are compared to the experimental results. The ratio of experimental results to theory value is $0.83{\sim}0.95$ in the case of bracket-type and welded-type of $0.87{\sim}0.9$, indicating an accurate and safe estimation.

  • PDF

Development of Advanced Mechanical Analysis Models for the Bolted Connectors under Cyclic Loads (반복하중을 받는 볼트 연결부에 대한 역학적인 고등해석 모델의 개발)

  • Hu, Jong Wan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.1
    • /
    • pp.101-113
    • /
    • 2013
  • This paper intends to develop mechanical analysis models that are able to predict complete nonlinear behavior in the bolted connector subjected to cyclic loads. In addition, experimental data which were obtained from loading tests performed on the T-stub connections are utilized to validate the accuracy of analytical prediction and the adequacy of numerical modeling. The behavior of connection components including tension bolt uplift, bending of the T-stub flange, stem elongation, relative slip deformation, and bolt bearing are simulated by the multi-linear stiffness models obtained from the observation of their individual force-deformation mechanisms in the connection. The component springs, which involve the stiffness properties, are implemented into the simplified joint element in order to numerically generate the behavior of full-scale connections with considerable accuracy. The analytical model predictions are evaluated against the experimental tests in terms of stiffness, strength, and deformation. Finally, it can be concluded that the mechanical models proposed in this study have the satisfactory potential to estimate stiffness response and strength capacity at failure.

Evaluation on the Behavior of Slip Critical Joints with TS High Strength Bolts Subjected to a Size of Bolt Holes (볼트 구멍 크기에 따른 TS 고력볼트 접합부 거동 평가)

  • Lee, Hyeon Ju;Kim, Kang Seok;Nah, Hwan Seon;Lee, Kang Min;Kim, Hyun Chul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.2
    • /
    • pp.136-143
    • /
    • 2011
  • The oversized and slotted holes are frequently required for the built-up in construction sites. The foreign provisions specify the reduction of the slip load subjected to the size of bolt holes and the direction of load. There are no domestic building codes and researches on the bolt holes. Therefore, it is necessary to evaluate a change of joint strength quantitatively according to the bolt-hole size and surface condition by means of experiment. This study was conducted to evaluate the slip load subjected to the size of bolt holes, and measured on a change of clamping force of high strength bolts during 168 and 800 hours to analyze the trend of relaxation after fastening bolts. Torque shear bolts defined on KS B 2819 was used for the specimen. Test results exhibit that the variation on the slip load of the others was below 10% by contrast with the standard hole and the highest rate of relaxation was 2.66% of the initial clamping force at the case of the long-slotted hole of 2.5D.

Lateral Strength of Double-Bolt Joints to the Larix Glulam according to Bolt Spacing (볼트 간격에 따른 낙엽송 집성재 이중 볼트접합부의 전단강도)

  • Kim, Keon-Ho;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.3
    • /
    • pp.1-8
    • /
    • 2008
  • The lateral strength test of bending type was done to investigate the lateral capacity of the double bolt connection of domestic larix glulam according to bolt spacing. In the shear specimen, which is bolted connection in the inserted plate type, the hole of bolt was made, changing the diameter of bolt (12 mm and 16 mm), the number of bolt (single bolt : control and double bolt), the direction of bolt row (in parallel to grain : Type-A and in perpendicular to grain : Type-B) and the bolt spacing (Type-A : 4 d and 7 d and Type-B : 3 d and 5 d). Lateral capacity and failure mode of bolt connection were compared according to conditions. In prototype design (KBCS, 2000), the reduction factor of the allowable shear resistance that the bolt spacing is reduced was calculated. The results were as follows. 1) Bearing stress per bolt in the single and double bolt connection of Type-A was directly proportional to bolt diameter and bolt spacing. Bearing stress of Type-B decreased as bolt diameter was increased, and decreased by 2~10% when bolt diameter was increased. 2) In the single bolt connection and the double bolt connection of Type-A, the splitted failure was formed in the edge direction. When the bolt spacing was 3 d in Type-B, bolt was yielded more in the part of tension than in the part of compression, and the splitted failure started at the bolt in the part of tension. In the 5 d spacing specimen, the bolt in the part of tension was yielded similarly to bolt in the part of compression, and the splitted failure started in the part of compression. 3) In the prototype design, the reduction factor was calculated by non-dimensionizing the yielding load in the standard of bolt spacing (Type A : 7 d and Type B : 5 d). In 12 mm bolt connection, the reduction factor of bolt spacing 4 d (type-A) and single bolt connection was 0.87 and 0.55, respectively, and the reduction factor of bolt spacing 3 d (Type-B) and single bolt connection was 0.91 and 0.55, respectively. In 16 mm bolt connection, the reduction factor of bolt spacing 4 d (type-A) and single bolt connection was 0.96 and 0.76, respectively, and the reduction factor of bolt spacing 3 d (Type-B) and single bolt connection was 0.91 and 0.77, respectively.

Development of Numerical Analysis Model for the Behavior Analysis of Bolted Connection (볼트 접합부의 거동 해석을 위한 수치해석 모델 개발)

  • Kim, Gwang-Chul
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.3
    • /
    • pp.1-9
    • /
    • 2007
  • To analyze the behavior of multiple bolted connection with analytical method, there was a major problem in terms of the number of bolt as two. Multiple bolted connection is wrong in other way, that is impossible to analyze the behavior of connection with various types. So the numerical analysis model was developed to analyze the behavior of connection with various types, and to overcome the limitation of number of bolt. The optimum values for analysis the behavior of multiple bolted connection with numerical methods were obtained as, r=0.35, Kx=137.5, and Ky=257.4. The numerical analysis method was developed in this study showed high efficiency for the existing methods in the behavior analysis of connection.

Structural Behavior of Bolted Lap-Joint Connection in the Pultruded FRP Structural Members (볼트로 겹침이음된 펄트루젼 복합재 접합부의 구조적 거동)

  • Lee, Young-Geun;Shin, Kwang-Yeoul;Joo, Hyung-Joong;Nam, Jeong-Hun;Yoon, Soon-Jong
    • Composites Research
    • /
    • v.23 no.1
    • /
    • pp.37-43
    • /
    • 2010
  • In this paper, we present the result of an experimental investigation pertaining to the structural behavior of bolted lap-joint connection of pultruded fiber reinforced plastic structural shapes. In the experimental investigation, in order to find the mechanical property of the material, tension and shear tests on the pultruded structural composite specimen are conducted prior to the investigation on the structural behavior of bolted lap-joint connection of the member. Based on the result, number of bolts, type of placement and location of bolt are determined to be a test variable. Three different types of experimental specimens are prepared. Tensile load is applied through the center of the specimen with lap-joint connection and the structural behavior and failure mode of the test specimens with respect to the tensile load increment are investigated. As a result, it is found that most of the failure mode at the lap-joint connection is shear failure mode. Consequently, it is also found that the data obtained through this experimental program could be used for the structure connection design as a basis.