• Title/Summary/Keyword: 복합판

Search Result 1,037, Processing Time 0.027 seconds

Free Vibration Analysis of Cantilevered Composite and Hybrid Composite Triangular Plates (외팔형 복합재료 및 혼합적층 삼각판의 자유진동 해석)

  • 최명환;이영신
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1992.10a
    • /
    • pp.153-157
    • /
    • 1992
  • 본 연구에서는 복합재료와 혼합적층 외팔형 삼각판의 동적거동을 실험을 통하여 파악하였다. 또한 실험 결과들의 비교를 위해서 FEM 해석을 수행하였다. 실험과 FEM의 결과들은 고유진동수(Hz)로 제시하였고, 또한 참고문헌과의 비교를 위해서 무차원 진동수매개 변수로 나타내었다. 그리고 외팔형 삼각판의 노달라인을 나타내었다.

  • PDF

Study on Design and Performance of Microwave Absorbers of Carbon Nanotube Composite Laminates (탄소나노튜브 복합재 적층판을 활용한 전파흡수체의 설계 및 성능에 대한 연구)

  • Kim, Jin-Bong;Kim, Chun-Gon
    • Composites Research
    • /
    • v.24 no.2
    • /
    • pp.38-45
    • /
    • 2011
  • In this paper, we present an optimization method for the single Dallenbach-layer type microwave absorbers composed of E-glass fabric/epoxy composite laminates. The composite prepreg containing carbon nanotubes (CNT) was used to control the electrical property of the composites laminates. The design technology using the genetic algorithm was used to get the optimal thicknesses of the laminates and the filler contents at various center frequencies, for which the numerical model of the complex permittivity of the composite laminate was incorporated. In the optimal design results, the content of CNT increased in proportion to the center frequency, but, on the contrary, the thickness of the microwave absorbers decreased. The permittivity and reflection loss are measured using vector network analyzer and 7 mm coaxial airline. The influence of the mismatches in between measurement and prediction of the thickness and the complex permittivity caused the shift of the center frequency, blunting of the peak at the center frequency and the reduction of the absorbing bandwidth.

Study on the Damage Characteristics Under the High-Velocity Impact of Composite Laminates Using Various Sensor Signals (다양한 센서 신호를 이용한 복합적층판의 고속충격 손상 특성 연구)

  • Cho, Sang-Gyu;Kim, In-Gul;Lee, Seok-Je;You, Won-Young
    • Composites Research
    • /
    • v.24 no.6
    • /
    • pp.49-55
    • /
    • 2011
  • The use of advanced composite materials in main structures of military and civil aircraft has been increased rapidly because of their considerable metals in high specific strength and stiffness. However, the mechanical properties of composite materials may severely degrade in the presence of damage. Especially, the high-velocity impact such as a hailstorm, and a small piece of tire or stone during high taxing, can cause considerable damage to the structures and sub-system in spite of a very small mass. However, it is not easy to detect the damage in composite plates using a single sensor or any conventional methods. In this paper, the PVDF sensors and AE sensors were used for monitoring high-velocity impact damage initiation and propagation in composite laminates. The WT(wavelet transform) is used to decompose the sensor signals. In the PVDF sensor and AE sensor signal analysis, amounts of high-frequency signals are increased when the impact energy is increased. PVDF sensor and AE sensor signal appeared similar results. This study shows how various sensing techniques can be used to characterize high-velocity impact damage of advanced composite laminates.

An Experimental Study on the Behaviour of Modular GFRP Deck for Use in Deteriorated Bridge Decks Replacement (노후교량 바닥판 대체용 Modular GFRP 바닥판 거동에 관한 실험 연구)

  • Ji, Hyo-Seon;Chunk, Kyung-Sik
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.1 no.2
    • /
    • pp.44-50
    • /
    • 2010
  • The behaviour of Modular GFRP(Glass Fiber Reinforced Polymers) decks for use in deteriorated bridge decks replacement are investigated experimentally in this study. As for the performance evaluation of bridge decks, experimental studies on the 3 test specimens with 1/5 scale of full size were carried out. Three specimens were sandwich plates with box tube cores. The constituents of bridge decks were glass fiber preforms and epoxy resin. The experimental results of all the specimens were summarized for maximum strength, stiffness and deformation capacity. A finite element analyses were compared to verify validity of experimental results.

  • PDF

Vibration Analysis of Special Orthotropic Plates on Elastic Foundation with Arbitrary Boundaries (자유경계를 갖고 탄성기초에 놓인 특별직교이방성 적층복합판의 진동해석)

  • 김덕현;이정호;홍창우;심도식
    • Composites Research
    • /
    • v.12 no.4
    • /
    • pp.25-32
    • /
    • 1999
  • A method of calculating the natural frequency corresponding to the first mode of vibration of beams and tower structures, with irregular cross sections and with arbitrary boundary conditions was developed and reported by Kim, D. H. in 1974. In this paper, the result of application of this method to the special orthotropic plates on elastic foundation with free boundaries is presented. Such plates represent the concrete highway slab and hybrid composite pavement on bridges. Any method may be used to obtain the deflection influence surfaces needed for this vibration analysis. Finite difference method is used for this purpose, in this paper. The influence of the modulus of the foundation and the aspect ratio of the plate on the natural frequency is thoroughly studied. The effect of neglecting the mass of the plates on the natural frequency, as the ratio of the point mass/masses to the plate mass increases, is also studied, in deep.

  • PDF

Free Vibration of Composite Cylindrical Shells with a Longitudinal, Interior Rectangular Plate (내부에 사각판이 결합된 복합재료 원통쉘의 자유진동)

  • 이영신;최명환
    • Composites Research
    • /
    • v.12 no.5
    • /
    • pp.65-79
    • /
    • 1999
  • This paper descrives the method to analyzed the free vibratioin of supported composite cylindrical shells with a longitudinal, interior rectangular plate. To obtain the free vibration characteristics before the combination of two structures, the energy principle based on the classical plate theory and Love's thin shell theory is adopted. The frequency equation of the combined system is formulated using the receptance method. When the line load and moment applied along the joint are assumed as the the Dirac delta and sinusolidal function, the continuity conditions at the joint of the plate and shell are proven to be satisfied. The effects on the combined shell frequencies of the length-no-radius ratios and radius-to-thickness ratios of the shell, fiber orientation angles and orthotropic modulus ratios of the composite are also examined.

  • PDF

Thermal Stress-induced Edge Failure of Thin Composite Laminates (열응력에 의한 얇은 복합적층판의 자유경계단 부위 파손)

  • 이성혁;최낙삼
    • Composites Research
    • /
    • v.12 no.1
    • /
    • pp.28-36
    • /
    • 1999
  • Thermal stress-induced failure in the free edge region of various thin carbon/epoxy composite laminates(1mm thick) has been investigated using the three-dimensional finite-element stress analysis, ultrasonic C-scan and microscopic observations. High thermal in-plane and interlaminar stresses were predicted in the interior layer near the free edge boundaries of the laminates. In the interior lamina, not in the skin lamina, of the thin laminates with lay-up of $[0_2/90_2]_s,\;[45_2/-45_0]_s,\;[0_2/60_2]_s$ treated by liquid $N_2$ immersion, many transverse matrix cracks took place due to thermal stress concentration, which agreed qualitatively with the above predictions.

  • PDF