• Title/Summary/Keyword: 복합재 샌드위치 구조

Search Result 81, Processing Time 0.027 seconds

Strength Improvement of Insert Joint for Composite Sandwich Structure (복합재 샌드위치 구조의 인써트 조인트의 강도 향상)

  • Kim, Kwang-Soo;An, Jae-Mo;Jang, Young-Soon;Yi, Yeong-Moo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.1
    • /
    • pp.29-34
    • /
    • 2010
  • In this study, joint strength and failure characteristics were experimentally examined with pull-out and shear specimens in which new designed "high strength insert" was applied. The performance of the new insert was compared with typical insert design. The experimental results showed that the "high strength insert" had the joint strengths of 2.1 times in the pull-out specimens and 2.04 times in the shear specimen compared with typical insert joints. Therefore, the new developed "high strength insert" will be usefully used in the aerospace structure.

An Experimental Study on the Mechanical Properties of T-Joints Structure using CFRP/Al Honeycomb Sandwich Composite (CFRP/Al하니콤 샌드위치 복합재 T-Joint 구조물의 기계적 물성에 대한 실험적 연구)

  • Cho, Ki-Dae;Ha, Sung-Rok;Kang, Kwang-Hee;Kim, Jie-Eok;Yang, Sung-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.3
    • /
    • pp.313-318
    • /
    • 2012
  • Application of composite structures on naval ships strongly depends on the mechanical strength and collapse behavior of the T-joints of the whole structure. Because of the weight advantages over single skin composite and bolt fastening joining, three types of T-joints using both honeycomb sandwich composite and adhesive bonding were suggested to determine the effect of T-joint configuration. It was found that joining with a urethane foam block and overlaminates using the secondary co-bonding technique improves T-joint strength.

Structural test of KSLV-I Payload fairing (KSLV-I 페이로드 페어링 구조시험)

  • Lee, Jong-Woong;Kong, Cheol-Won;Eun, Se-Won;Nam, Gi-Won;Jang, Young-Soon;Shim, Jae-Yeul;Lee, Young-Shin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.11
    • /
    • pp.900-907
    • /
    • 2013
  • Payload fairing(PLF) protects satellites and related equipment from the external environment. They are separated before the satellite separation. Payload fairing made of composite sandwich materials due to their considerable bending stiffness and strength-to-weight ratio. Payload fairing have compression, shear and bending load during the flight. In this study, To check the strength of PLF and connected part, structural test of PLF accomplished using an actuator and a fixture. Purpose of structural test is to verify the strength of PLF in force of separation spring and combination structural load applied. Test result shows that the PLF have an acceptable margin of safety for the combination structural load and force of separation spring.

Design on High Efficiency and Light Composite Propeller Blade of High Speed Turboprop Aircraft (고속 터보프롭 항공기용 고효율 경량화 복합재 프로펠러 블레이드 설계 연구)

  • Kong, Chang-Duk;Lee, Kyung-Sun;Park, Hyun-Bum;Choi, Won
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.3
    • /
    • pp.57-68
    • /
    • 2012
  • In this study, designs of the high efficiency composite propeller blade for a high speed turboprop aircraft, which will be used for a next generation regional commercial aircraft in Korea, are performed. Both the vortex theory and the blade element theory are used for preliminary aerodynamic design and performance analysis of the propeller. Then the aerodynamic design result is confirmed through performance analysis using a commercial CFD code, ANSYS. The carbon/epoxy composite materials is used, and the skin-spar-foam sandwich type structure is adopted for improvement of lightness and structural stability. Finally, it is investigated that the proposed propeller blade has high efficiency and structural safety through both aerodynamic and structural analysis and experimental test of a prototype propeller blade.

Design on High Efficiency and Light Composite Propeller Blade of Regional Aircraft (중형항공기급 고효율 경량화 복합재 프로펠러 블레이드 설계 연구)

  • Kong, Chang-Duk;Lee, Kyung-Sun;Park, Hyun-Bum;Choi, Won
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.253-258
    • /
    • 2012
  • In this study, designs of the high efficiency composite propeller blade for a high speed turboprop aircraft, which will be used for a next generation regional commercial aircraft in Korea, are performed. Both the vortex theory and the blade element theory are used for preliminary aerodynamic design and performance analysis of the propeller. Then the aerodynamic design result is confirmed through performance analysis using a commercial CFD code, ANSYS. The carbon/epoxy composite materials is used, and the skin-spar-foam sandwich type structure is adopted for improvement of lightness and structural stability. Finally, it is investigated that the proposed propeller blade has high efficiency and structural safety through both aerodynamic and structural analysis and experimental test of a prototype propeller blade.

  • PDF

Design and Analysis of Composite Reflector of High Stable Deployable Antenna for Satellite (위성용 전개형 고안정 반사판 안테나 복합재 주반사판 설계 및 해석)

  • Dong-Geon Kim;Kyung-Rae Koo;Hyun-Guk Kim;Sung-Chan Song;Seong-Cheol Kwon;Jae-Hyuk Lim;Young-Bae Kim
    • Composites Research
    • /
    • v.36 no.3
    • /
    • pp.230-240
    • /
    • 2023
  • The deployable reflector antenna consists of 24 unit main reflectors, and is mounted on a launch vehicle in a folded state. This satellite reaches the operating orbit and the antenna of satellite is deployed, and performs a mission. The deployable reflector antenna has the advantage of reduce the storage volume of payload of launch vehicle, allowing large space structures to be mounted in the limited storage space of the launch vehicle. In this paper, structural analysis was performed on the main reflector constituting the deployable reflector antenna, and through this, the initial conceptual design was performed. Lightweight composite main reflector was designed by applying a carbon fiber composite and honeycomb core. The laminate pattern and shape were selected as design variables and a design that satisfies the operation conditions was derived. Then, the performance of the lightweight composite reflector antenna was analyzed by performing detailed structural analysis on modal analysis, quasi-static, thermal gradient, and dynamic behavior.

A Study on Flame Spread Prevention of Sandwich Panel (복합자재 화재확산방지구조에 대한 연구)

  • Cho, Nam-Wook;Kim, Do-Hyun;Shim, Ji-Hun
    • Fire Science and Engineering
    • /
    • v.29 no.6
    • /
    • pp.84-90
    • /
    • 2015
  • Multi-layered material (sandwich panel) consists of double-sided steel plate which is incombustible material or similar material and core material which is not incombustible material. In case of sandwich panel which uses combustible material as insulation, flames spread inside the steel plate at the time of fire so that it is difficult to extinguish fire from the outside and flames spread rapidly and may cause the building to collapse. The current Building Act requires the sandwich panel to secure fire-retardant performance according to the purpose and size of building. In this study, the fire spreading prevention structure applied to partial exterior walls was applied to multi-layered material and its effect was measured through full scale fire test and the possibility to secure fire safety of buildings by applying the fire spreading prevention structure to multi-layered material in future was presented.

Structural Safety Analysis of a Spherical Flight Simulator Designed with a GFRP-Foam Sandwich Composite (GFRP-폼 샌드위치 복합재료로 설계된 구체 비행 시뮬레이터의 구조 안정성 평가)

  • Hong, Chae-Young;Ji, Wooseok
    • Composites Research
    • /
    • v.32 no.5
    • /
    • pp.279-283
    • /
    • 2019
  • A flight training simulator of a fully spherical configuration is being developed to precisely and quickly control six degrees of freedom (Dof) motions especially with unlimited rotations. The full-scale simulator should be designed with a lightweight material to reduce inertial effects for fast and stable feedback controls while no structural failure is ensured during operations. In this study, a sandwich composite consisting of glass fiber reinforced plastics and a foam core is used to obtain high specific strengths and specific stiffnesses. T-type stainless steel frames are inserted to minimize the deformation of the sphere curvature. Finite element analysis is carried out to evaluate structural safety of the simulator composed of the sandwich sphere and steel frames. The analysis considers the weights of the equipment and trainee and it is assumed to be 200 kg. Gravity acceleration is also considered. The stresses and displacement acting on the simulator are calculated and the safety is assessed under two different situations.

A Study on Failure Evaluation of Korean Low Floor Bus Structures Made of Hybrid Sandwich Composite (하이브리드 샌드위치 복합재 초저상버스 구조물의 파손 평가 연구)

  • Lee, Jae-Youl;Shin, Kwang-Bok;Lee, Sang-Jin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.6
    • /
    • pp.50-61
    • /
    • 2007
  • The structural stiffness, strength and stability on the bodyshell and floor structures of the Korean Low Floor Bus composed of laminate, sandwich panels and metal reinforced frame were evaluated. The laminate composite panel and facesheet of sandwich panel were made of WR580/NF4000 glass fabric/epoxy laminate, while aluminum honeycomb or balsa was applied to the core materials of the sandwich panel. A finite element analysis was used to verify the basic design requirements of the bodyshell and the floor structure. The use of aluminum reinforced frame and honeycomb core was beneficial for weight saving and structural performance. The symmetry of the outer and inner facesheet thickness of sandwich panels did not affect the structural integrity. The structural strength of the panels was evaluated using Von-Mises criterion for metal structures and total laminate approach criterion for composite structures. All stress component of the bodyshell and floor structures were safely located below the failure stresses. The total laminate approach is recommended to predict the failure of hybrid sandwich composite structures at the stage of the basic design.

Study on Low Temperature Environmental Characteristics of Sandwich Core Made with 3D Printer (3D 프린터로 제작한 샌드위치 코어의 저온 환경 특성 연구)

  • Ahn, Ju-Hun;Choi, Ju-Hwan;Hong, Seung-Lae;Lee, Chang-Yull
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.4
    • /
    • pp.18-25
    • /
    • 2019
  • Studies on the fabrication of UAV by using 3D printer have been actively carried out. However, research on structural load characteristics in low temperature environment is insufficient. In this study, a composite sandwich structure with ordinary orbs structure was proposed, and the load characteristics for temperature condition changes were analyzed. The ordinary orbs and honeycomb structures were fabricated by using a FDM type 3D printer. The bending load test was carried out at room temperature and low temperature condition. The low temperature condition was classified into four cases. Bending load tests were performed in a low temperature chamber to maintain the required temperature conditions. As a result of the test, it was confirmed that the proposed ordinary orbs structure had better load characteristics at low temperatures than the existing honeycomb structure.