• Title/Summary/Keyword: 복합재 구조체

Search Result 172, Processing Time 0.027 seconds

Electrodeposition of ZnO nanostructures on various carbon structures (복합재 제조를 위한 탄소섬유상에 ZnO 전기도금)

  • Hong, Eun-Mi;Im, Dong-Chan;Lee, Gyu-Hwan;Kim, Yang-Do
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.05a
    • /
    • pp.293-294
    • /
    • 2012
  • 탄소섬유 복합재의 기계적 강도를 높이기 위하여 탄소섬유상에 ZnO 나노구조체를 도금하는 연구를 수행하였다. 전기도금을 이용하여 정전위법으로 탄소섬유상에 ZnO 나노구조체를 도금시킨 후 에폭시 YD-128과 경화제 KBH1089를 이용하여 탄소섬유 복합재를 제작하였다. 제작된 탄소섬유 복합재는 실험규격 ASTM D2344를 준수하였으며 ILSS(Interaminar Shear Strength)시험으로 강도를 측정하였다. 본 연구결과 탄소섬유에 인가되는 coulomb양을 조절함으로서 ZnO 나노구조체 형상을 제어할 수 있었으며, 일반탄소섬유 복합재와 ZnO 나노구조체가 도금된 탄소섬유 복합재의 강도를 비교하였을 때 ZnO 나노구조체가 도금 된 탄소섬유 복합재에서 더 높은 강도 값을 얻을 수 있었다.

  • PDF

Development and Evaluation of Large Scale Composite Lattice Structures (대형 복합재 격자구조체 개발 및 평가)

  • Kim, Donggeon;Doh, Youngdae;Kim, Gensang;Kim, Myungjoo;Lee, Sangwoo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.6
    • /
    • pp.74-86
    • /
    • 2021
  • The composite lattice structure is a structure that supports the required load with the minimum weight and thickness. Composite lattice structure is manufactured by the filament winding process using impregnating high-strength carbon fiber with an epoxy resin. Filament winding process can laminate and manufacture only structurally necessary parts, composite lattice structure can be applied to aircraft fuselages, satellite and launch vehicles, and guided weapons to maximize weight reduction. In this paper, the development and evaluation of the composite lattice structure corresponding to the entire process from design, analysis, fabrication, and evaluation of large-scale cylindrical and conical composites lattice structure were performed. To be applicable to actual projectiles and guided weapons, we developed a cylindrical lattice structure with a diameter of 2,600 mm and a length of 2,000 mm, and a conical lattice structure with an upper diameter of 1,300 mm, a lower diameter of 2,500 mm, and a length of 900 mm. The performance of the developed composite lattice structure was evaluated through a load test.

Development of a Composite Spacecraft Structure for STSAT-3 Satellite Program (소형 복합재 위성 구조체 개발)

  • Cho, Hee-Keun;Seo, Jung-Ki;Kim, Byoung-Jung;Jang, Tae-Seung;Cha, Won-Ho;Lee, Dai-Gil;Myung, Noh-Hoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.7
    • /
    • pp.727-736
    • /
    • 2010
  • A satellite that has an all-composite structure, STSAT-3(science and technology satellite), was initially developed in Korea. Partially use of advanced composites in space applications such as solar panel is well developed, however the application of an all-composite satellite bus has never been achieved in Korea. This study emphasizes the application of composite technology to the design and fabrication of an all-composite spacecraft bus for small-class satellite STSAT-3. Moreover its structure design concept is totally different from the one that was used in the previous satellites developed in Korea.

Study on Evaluation Method of Structural Integrity of Cylindrical Composite Lattice Structures (원통형 복합재 격자구조체의 구조안전성 평가 기법 연구)

  • Im, Jae-Moon;Kang, Seung-Gu;Shin, Kwang-Bok;Lee, Sang-Woo
    • Composites Research
    • /
    • v.30 no.6
    • /
    • pp.338-342
    • /
    • 2017
  • In this paper, evaluation method of structural integrity of cylindrical composite lattice structures was conducted. A finite element analysis was used to evaluate the structural integrity of composite lattice structures. In order to verify the optimal finite element in the evaluation of the structural integrity, finite element models for cylindrical composite lattice structure were generated using beam, shell and solid elements. The results of the finite element analyses with the shell and solid element models showed a good agreement. However, considerable differences were found between the beam element model and the shell and solid models. This occurred because the beam element does not take into account the degradation of the mechanical properties of the non-intersection parts of cylindrical composite lattice structures. It was found that the finite element analysis of evaluation of structural integrity for cylindrical composite lattice structures have to use solid element.

FFT 필터링 기법을 적용한 저에너지 충격시험기의 충격신호 분석

  • 김준영;윤성호;권상호
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1999.04a
    • /
    • pp.29-29
    • /
    • 1999
  • 낙하추 방식의 저에너지 충격시험기는 일정한 질량을 가진 충격체를 금속재/복합재 구조재에 낙하시켜 줌으로써 인위적인 충격에너지를 금속재/복합재 구조재에 가하여 주는 장치로서 금속재/복합재 구조재의 충격으로 인한 손상 거동과 충격특성을 평가하기 위한 용도로 널리 활용되고 있다.

  • PDF

Manufacturing Processes of Cylindrical Composite Lattice Structures using Filament Winding Method (필라멘트 와인딩 공법을 이용한 원통형 복합재 격자구조체 제작 공정)

  • Im, Jaemoon;Shin, Kwangbok;Lee, Sangwoo;Son, Johwa
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.835-837
    • /
    • 2017
  • In this paper, manufacturing processes of cylindrical composite lattice structures using filament winding method was described. Cylindrical composite lattice structures were manufactured in accordance with four major steps. Silicon mold of lattice shape was installed on mandrel and then continuous fiber was wound on silicon mold. After winding process, in order to ensure the same thickness for all regions, compression process was done for its intersection parts. Finally, the composite lattice structure was demoulded after curing in oven. It was found that the manufactured cylindrical composites lattice structure had 2.4% of dimensional error compared to the design requirements.

  • PDF

Study on Evaluation Method of Structural Integrity for Cone-Type Composite Lattice Structures with Hexagonal Cell (육각 격자구조를 갖는 콘형 복합재 격자구조체의 구조안전성 평가 기법 연구)

  • Im, Jae-Moon;Kang, Seung-Gu;Shin, Kwang-Bok;Lee, Sang-Woo
    • Composites Research
    • /
    • v.31 no.4
    • /
    • pp.156-160
    • /
    • 2018
  • In this paper, evaluation method of structural integrity for cone-type composite lattice structures with hexagonal cell was conducted. A finite element analysis was used to evaluate the structural integrity of cone-type composite lattice structure. The finite element model for evaluation of structural integrity was generated using solid element. In order to consider the difference in mechanical properties between intersection and non-intersection part, the mechanical properties were applied considering the fiber volume fraction of each part. Compression test of cone-type composite lattice structure were conducted for verification of evaluation method of structural integrity. The analysis result showed 2% errors in displacement and good agreement with test result.

Mechanical Properties and Structural Analyses for the Corrugated 3 Layered Sandwich Panels (코로게이트 3층 샌드위치 패널 구조체 물성 및 구조해석)

  • Yun, Su-Jin;Heo, Yeup;Gil, Hyun-Young;Park, Dong-Chang
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.5
    • /
    • pp.75-89
    • /
    • 2019
  • In the present work, structural analyses for light weight corrugate 3 layered sandwich panels are carried out. The mechanical properties of the sandwich panels are obtained using the modified analytical closed form based on a corrugated panel deformation and the homogenization scheme of an uniaxial composite. Subsequently, the mechanical properties estimated by the two aforementioned methods were employed for the numerical analyses for the corrugated sandwich panels under the specifically loading conditions, and a comparison between two methods was also made.

A Study on Calculation of Test Load for Full-Scale Airframe Structural Test of Composite Aircraft (복합재 항공기 전기체 구조시험 시험하중 산출 방법 연구)

  • Choi, Ik-Hyeon;Ahn, Seok-Min
    • Aerospace Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.146-153
    • /
    • 2011
  • Some methods of calculation of test load value from design load data were investigated which will be applied at strap installed full-scale airframe of composite aircraft. These methods were applied to left wing of KC-100 composite aircraft and the calculated test load values were compared with each others. Generally since test load values are differently calculated according to each aircraft type and position of straps, all calculation methods mentioned at this study need to be applied and compared to each aircraft. Finally the most appropriate method needs to be selected.