• Title/Summary/Keyword: 복합재료 적층평판

Search Result 56, Processing Time 0.024 seconds

A Study on the Influence of Stacking Sequences using CFRP Laminate Plates by Falling Weight Impact (탄소섬유복합평판에 낙추충격을 가할 때 적층구성에 미치는 영향에 관한 연구)

  • 임광희;박노식;양인영
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.106-109
    • /
    • 2000
  • Impact tester was build up to evaluate the characterization of CFRP laminate plates under the low velocity impact. The tests were conducted on several laminates of different ply orientation A system was budded for the impact strength of CFRP laminates in consideration of stress wave propagation theory using drop-weight impact tester as one of impact test. Results indicate that absorbed energy of quasi-isotropic specimen having four interfaces is higher than that of orthotropic laminates with two interfaces. Also the damage area was measured with ultrasonic C-scanner on some samples. In the specimens the relationship was linear between damaged area and absorbed energy to some degree. Absorbed energy in the specimen that ply number, interface number and fiber stacking sequences is same but having hybrid is higher than that of orthotropic laminates without hybrid.

  • PDF

Partial Layerwise-to-ESL Coupling Elements for Multiple Model Analysis (다중모델 해석을 위한 부분층별-등가단층 결합요소)

  • Shin, Young-Sik;Woo, Kwang-Sung;Ahn, Jae-Seok
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.3
    • /
    • pp.267-275
    • /
    • 2009
  • This paper presents the p-convergent coupling element on the basis of the ESSE(equivalent single layer shell element) and the PLLE(partial-linear layerwise element) to analyze laminated composite plates. The ESSE is formulated by the degenerated shell theory, on the other hand, the assumption of the PLLE is piecewise linear variation of the in-plane displacement and a constant value of lateral displacement across the thickness. The proposed finite element model is based on p-convergence approach. The integrals of Legendre polynomials and Gauss-Lobatto technique are chosen to interpolate displacement fields and to implement numerical quadrature, respectively. This study has been focused on the verification of p-convergent element. For this purpose, various finite element multiple models associated with the combination of ESSE and PLLE elements are tested to show numerical stability. The simple examples such as a cantilever beam subjected vertical load and a plate with tension are adopted to evaluate the performance of proposed element.

Modeling on Structural Control of a Laminated Composite Plate with Piezoelectric Sensor/Actuators (압전재료를 이용한 복합적층판의 구조제어에 관한 모델링)

  • 황우석;황운봉;한경섭;박현철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.1
    • /
    • pp.90-100
    • /
    • 1993
  • A finite element formulation of vibration control of a laminated plate with piezoelectric sensor/ actuators is presented. Classical lamination theory with the induced strain actuation and Hamilton's principle are used to formulate the equations of motion of the system. The total charge developed on the sensor layer is calculated from the direct piezoelectric equation. The equations of motion and the total charge are discretized with 4 node, 12 degrees of freedom quadrilateral plate bending elements with one electrical degree of freedom. The mass and stiffness of the piezoelectric layer are introduced by treating them as another layer in laminated plate. Piezoelectric sensor/actuators are distributed, but discrete due to the geometry of electrodes. By defining an i.d. number of electrode for each element, modelling of electrodes with variable geometry can be achieved. The static response of a piezoelectric bimorph beam to electrical loading and sensor voltage to given displacement are calculated. For a laminated plate under the negative velocity feedback control, the direct time response by the Newmark-.betha. method and damped frequencies and modal damping ratios by modal state space analysis are derived.

Panel Flutter Analysis of Cross-Ply Composite Plate Utilizing Minimum Angle Tracking (최소각 추적 방식을 이용한 직교적층평판에 대한 플러터 해석)

  • 김기언;박흥석;김현순
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.271-278
    • /
    • 1999
  • An alternative panel flutter approach utilizing minimum angle is presented. The minimum angle is the lowest value among the angles between modes i and j at a certain pressure condition. This method utilizes eigenvectors rather than eigenvalues. Cross-ply composite plates are considered in this study. A remarkable result of this investigation is that the angle always dropped gradually to zero for all presented examples

  • PDF

복합재연소관과 노즐의 결합부위에대한 응력 및 파손해석

  • Hong, Chang-Seon;Kim, Yong-Wan;Park, Ji-Yang;Jo, Won-Man;Jeong, Bal;Hwang, Tae-Gi
    • Defense and Technology
    • /
    • no.10 s.164
    • /
    • pp.43-44
    • /
    • 1992
  • 복합재 연소관과 노즐을 기계적 체결방법으로 결합하면 결합부위에서 재료의 불연속성과 기하학적 불연속성으로 인한 높은 응력집중이 발생해 구조적으로 매우 취약하게 됩니다. 복합재 연소관의 경우에는 내압을 받는 원통형 구조물이므로 기존의 평판에 대한 연구결과를 그대로 사용할수 없으므로, 이 글에서는 복합재 셀 구조물의 응력 및 파손 해석을 수행할수 있도록 1차전단변형 셀이론을 이용한 유한요소해석 프로그램을 개발하였습니다. 기계적체결부위의 모델링에 대해 검토하였으며 복합재료의 파손평가에 사용되는 여러가지 파손식을 적용해 비교하였습니다. 이 해석 방법을 이용해 복합재 연소관의 적층각, 볼트직경, 연소관의 끝단까지의 길이 등이 파손하중에 미치는 영향을 제시하였습니다

  • PDF

Analysis of the Fracture Behavior of Plate-type Piezoelectric Composite Actuators by Acoustic Emission Monitoring (음향방출법을 이용한 평판형 압전 복합재료 작동기의 파괴거동 해석)

  • Woo, Sung-Choong;Goo, Nam-Seo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.4
    • /
    • pp.220-230
    • /
    • 2006
  • Fracture behavior of a monolithic PZT and a plate-type piezoelectric composite actuator (PCA) has been investigated under a bending load at three points by an acoustic emission (AE) monitoring. AE signal from a monolithic PZT at the maximum bending load shows the characteristics of high amplitude and long duration with a low frequency band of $100{\sim}230kHz$ which is confirmed by fast Fourier transform (FFT). For a PCA, it is concluded that AE signals with high amplitude over 80dB and low dominant frequency band of $170{\sim}223kHz$ emitted in the stage I are due to the brittle fracture in the PZT layer and the delamination between the PZT layer and the adjacent fiber composite layer. Based on the above analysis of AE behavior and damage observations with an optical microscopy and a scanning electron microscopy, AE characteristics related to fracture behavior of asymmetrically laminated PCA have been elucidated.

Interlaminar stress behavior of laminated composite plates under Low velocity Impact (저속충격을 받는 적층복합재료 평판의 미시구조를 고려한 interlaminar stress 거동 연구)

  • Ji, Kuk-Hyun;Kim, Seung-Jo
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.249-252
    • /
    • 2005
  • Prediction of damage caused by low-velocity impact in laminated composite plate is an important problem faced by designers using composites. Not only the inplane stresses but also the interlaminar normal and shear stresses playa role in estimating the damage caused. The work reported here is an effort in getting better predictions of damage in composite plate using DNS approach. In the DNS model, we discretize the composite plates through separate modeling of fiber and matrix for the local microscopic analysis. Through comparison with the homogenized model. In the view of microscopic mechanics with DNS model, interlaminar stress behaviors in the inside of composite materials is investigated and compared with the results of the homogenized model which has been used in the conventional approach of impact analysis.

  • PDF

Characteristics of Falling Weight Impact Responses due to Stacking Sequences of CF/Epoxy Composite Plates (CF/Epoxy 복합평판의 적층구성에 따른 낙추충격특성에 관한 연구)

  • 박노식;임광희;김기형;양인영
    • Composites Research
    • /
    • v.13 no.6
    • /
    • pp.30-38
    • /
    • 2000
  • In this paper, a system of falling weight impact tester was built up to evaluate the impact energy absorbing characteristics and impact strength of CFRP laminate plates in consideration of stress wave propagation theory. Delamination area of impacted specimens for the different ply orientation was measured with ultrasonic C-scanner to find correlation between impact energy and delamination area. Absorbed energy of quasi-isotropic specimen having four interfaces was higher than that of orthotropic laminates with two interfaces. The more interfaces, the more absorbed energy. Hybrid specimen containing GFRP layer was higher than that of normal specimens.

  • PDF

Impact Damage Detection of Smart Composite Laminates Using Wavelet Transform (웨이블릿 변환을 이용한 스마트 복합적층판의 충격 손상 검출 연구)

  • 성대운;오정훈;김천곤;홍창선
    • Composites Research
    • /
    • v.13 no.1
    • /
    • pp.40-49
    • /
    • 2000
  • The objective of this research is to develop the impact monitoring techniques providing impact identification and damage diagnostics of smart composite laminates susceptible to impacts. This can be implemented simultaneously by using the acoustic waves by the impact loads and the acoustic emission waves from damage. In the previous research, we have discussed the impact location detection process in which impact generated acoustic waves are detected by PZT using the improved neural network paradigm. This paper describes the implementation of time-frequency analysis such as the Short-Time Fourier Transform (STFT) and the Wavelet Transform (WT) on the determination of the occurrence and the estimation of damage.

  • PDF

Simplified Analytical Model for Flexural Response of Fiber Reinforced Plastic Decks (FRP 바닥판의 휨 해석모델 개발)

  • Kim, Young-Bin;Lee, Jae-Hong
    • Journal of Korean Association for Spatial Structures
    • /
    • v.5 no.3 s.17
    • /
    • pp.65-74
    • /
    • 2005
  • An analytical model was developed to investigate the flexural behavior of a pultruded fiber-reinforced plastic deck of rectangular unit module. The model is based on first-order shea. deformable plate theory (FSDT), and capable of predicting deflection of the deck of arbitrary laminate stacking sequences. To formulate tile problem, two-dimensional plate finite element method is employed. Numerical results are obtained for FRP decks under uniformly-distributed loading, addressing the effects of fiber angle and span-to-height ratio. It is found that the present analytical model is accurate and efficient for solving flexural behavior of FRP decks. Also, as the height of FRP deck plate is higher, the necessity of higher order Shear deformable plate theory(HSDT) is announced, not the FSDT in the plate analysis theory.

  • PDF