• Title/Summary/Keyword: 복합열화

Search Result 282, Processing Time 0.03 seconds

Prediction of Deterioration Process for Concrete Considering Combined Deterioration of Carbonation and Chlorides Ion (중성화와 염해를 고려한 콘크리트의 복합열화 예측)

  • Lee, Chang-Soo;Yoon, In-Seok
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.6
    • /
    • pp.902-912
    • /
    • 2003
  • The most common deteriorating processes of concrete structures are carbonation and chloride ion ingress. Many concrete structures have been suffered from chloride ions diffusion or carbonation induced reinforcement corrosion damage and many studies have been done on it. However, those studies were confined mostly to the single deterioration of carbonation or chloride attack only, although actual environment is rather of combined conditions. In case of many in-situ concrete structures, deterioration happened more for the case of combined attack than the single case of carbonation or chloride attack. In this paper, chloride profiles of carbonated concrete is predicted by considering two layer composite model, which is based on Fick's 2nd law. From the experimental result on combined deterioration of chloride and carbonation, it was examined that high chloride concentration was built up to 3∼5 mm over depth from carbonation depth. The analytical modeling of chloride diffusion was suggested to depict the relative influence of the carbonation depth. The diffusion coefficients of carbonation concrete and uncarbonated concrete with elapsed time were considered in this modeling.

Mathematical Modeling of Re-Diffusion Response of De-Sorbed Chloride Ions in Concrete Due to Carbonation (콘크리트의 탄산화로 인해 탈착된 염소이온의 재확산에 대한 해석 연구)

  • Yoon, In-Seok;Sung, Jae-Duck
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.259-260
    • /
    • 2009
  • Many concrete structures have suffered from carbonation or chloride ion diffusion induced reinforcement corrosion, and a number of studies have been done on these topics. Many studies were mostly confined to the single deterioration of carbonation or chloride ion, although the environment actually presents a combined condition. This paper tried to develop the approach to compute re-diffusion of de-sorbed chloride due to carbonation of concrete. This is a key for successful combined deterioration model of carbonation and chloride. It is thought that this paper can contribute to express mathematically chloride enrichment and re-diffusion of chloride at front of carbonation.

  • PDF

Analyses of Nano Epoxy-Silica Degradation in LEO Space Environment (저궤도 우주환경에서 에폭시-실리카 나노 복합소재의 열화거동 분석)

  • Jang, Seo-Hyun;Han, Yusu;Hwang, Do Soon;Jung, Joo Won;Kim, Yeong Kook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.12
    • /
    • pp.945-952
    • /
    • 2020
  • In this study, the effects of Low Earth Orbit(LEO) environments on the degradation behavior of epoxy nano silica composite materials were investigated. The nanocomposite materials containing silica particles in different weight ratios of 10% and 18% were prepared and degraded in a LEO simulator to compare with the neat epoxy cases. Thermogravimetric analysis (TGA) was performed on the degraded nanocomposites and the activation energies were calculated by Friedman method, Flynn-Wall-Ozawa (FWO) method, Kissinger method, and DAEM (Distributed Activation Energy Method) based on the iso-conversional method. As the results, for the neat epoxy sample cases, it was found that the average activation energy was increased as the degradation was progressed. When the nano particles were mixed, however, the energy increased to the 15 environmental test cycles, and decreased afterwards, meaning that the particle mixture contributed adversely to the thermal degradation. Discussions on the results of the different calculation methods were also given.

Multi-stress accelerated aging test method for distribution polymer surge arresters (배전용 폴리머피뢰기의 복합 가속열화 시험방법 개발)

  • Kim, Ju-Yong;Song, Il-Keun;Park, Chul-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2008.05a
    • /
    • pp.141-142
    • /
    • 2008
  • 국내 배전선로에서는 1999년부터 폴리머피뢰기를 설치하여 운영하고 있으나, 이들의 열화특성에 관한 데이터와 적합한 평가방법이 부족하여 장기적인 운영계획 수립이 어려운 상태이다. 이에 따라 본 논문에서는 폴리머피뢰기의 현장 열화인자를 인가할 수 있는 복합가속열화 시험장치를 제작하고 국내 환경조건을 모의할 수 있는 시험주기를 개발하여 폴리머피뢰기 완제품에 대한 장기신뢰성 평가법을 제안하였다. 그리고 가속열화시험 및 현장설치에 의한 전기적, 화학적 특성변화를 분석하여 폴리머피뢰기의 열화정도를 평가함으로써 본 연구에서 제안한 평가기법의 실효성을 검증하고 국산 폴리머피뢰기의 유지보수에 필요한 특성 데이터를 제시하였다.

  • PDF

Aging Properties from Forest-fire Simulated Acceleration of Porcelain Insulators for Transmission Line (송전용 애자의 산불 복합가속열화 특성)

  • Han, Se-Won;Choi, In-Hyuk;Lee, Dong-Il;Lee, Won-Kyo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.114-114
    • /
    • 2010
  • 산불에 노출되는 경우 열충격으로 작용하는 패턴과 특성을 검토하여 가속열화시험에 반영하는 것이 필요하다. 본 연구에서는 산불환경을 모의하여 복합열화시험을 실시하기위해 복합가속열화 챔버를 구축하였다. 온도는 주로 $200^{\circ}C$에서 최대 $1000^{\circ}C$까지 변화를 주면서 예비시험과 본시험 실하였다.

  • PDF

Building mix design and quality control measures to reduce the combined deterioration of plain concrete in harsh environments (혹독한 환경에서의 무근콘크리트 복합열화 저감을 위한 배합설계 및 품질관리 방안 구축)

  • Kim, Dae-Geon;Park, Chan-Kyu
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.10a
    • /
    • pp.85-86
    • /
    • 2016
  • Recently damages caused by the additional costs and degradation in durability combined deterioration due to plain concrete deterioration has occurred. In particular, in the case of the finish that is not exposed to the outside air in the concrete to respond to the harsh environment (freeze-thawing, calcium laying, etc.), to establish a quality control way for the process and the concrete mix design for it.

  • PDF

A Study on the Reduction of Combined Deterioration by Mixing Latex in Base Concrete (바탕콘크리트의 라텍스 혼입에 따른 복합열화 저감에 관한 연구)

  • Kim, Dae-Geon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.101-102
    • /
    • 2023
  • This study aims to mix the base concrete by mixing latex to improve the durability performance to reduce the composite deterioration of the base concrete. Latex fiber has high resistance to freezing and thawing, adhesion, and deicing agent (calcium chloride), and it is used to secure long-term durability to reduce cracking and compound deterioration of concrete. In addition, through experiments, we are trying to find ways to improve the strength of concrete by studying the mixing of the appropriate mixing ratio of latex.

  • PDF

A Study on the Optimum Mixture for Reducing Combined Deterioration of Eco-Friendly Concrete Using Waste Fibe (폐섬유를 활용한 친환경 바탕 콘크리트의 복합열화 저감 최적 배합에 관한 연구)

  • Kim, Dae-Geon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.37-38
    • /
    • 2023
  • As one of the resource recovery projects, this study aims to select natural fibers and synthetic fibers that can be used for concrete mixing among waste fibers and reuse them for the base concrete mixture. Using waste fiber, we seek a solution to the problem of reduced fluidity and hardening time of fiber-reinforced concrete and find the optimal mix of the ground concrete mixed with waste fiber.

  • PDF

An Experimental Study on the Durability Evaluation of Polymer Cement Restoration Materials for Deteriorated Reinforced Concrete Structures (성능저하된 철근콘크리트구조물 폴리머시멘트계 보수용 단면복구재의 내구성 평가에 관한 실험적 연구)

  • Kim, Moo-Han;Kim, Jae-Hwan;Cho, Bong-Suk;Park, Jong-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.1
    • /
    • pp.123-130
    • /
    • 2006
  • The duties of the restorative materials are to bear up against stress and to protect reinforcement corrosion. So the restorative materials are estimated by various kinds of strength, permeability and etc, But, in case of existing performance evaluation of restorative materials, because various deterioration factors are separately acted, the system of performance evaluation is different from that of combined deterioration of real structure and it is difficult to evaluate the exact performance of restorative materials. In this study, to evaluate Performance of restorative materials, we compare their korea standard properties in terms of compressive and bending strength and permeability of water and air with real durability for carbonation, salt damage and actual reinforcement corrosion like ratio of corrosion area. weight reduction and corrosion velocity of steel bar under environment of combined deterioration. The results showed that strength and permeability of restorative materials are similar but their resistance to carbonation, salt damage and actual reinforcement corrosion are very different.