• Title/Summary/Keyword: 복합선형구간

Search Result 23, Processing Time 0.022 seconds

Analysis of Traffic Accident Characteristics for the Overlap Section of Horizontal and Vertical Alignment (평면곡선과 종단곡선이 겹친 복합선형 구간에서 교통사고 특성분석)

  • Park, Min-Soo;Chang, Myung-Soon
    • International Journal of Highway Engineering
    • /
    • v.14 no.1
    • /
    • pp.95-102
    • /
    • 2012
  • This study has been conducted to characterize the relations between the accident rate and the overlap section elements where the horizontal alignment and vertical alignment are overlapped. The researches were performed on Horizontal curve sections of 4-lane highways with 100km/h of design speed and speed limit. Korea Highway Corporation's Geographic Figurative Information System was adopted for geometric organization and Highway Traffic Accident Statistics was used. The results reveal that sections made of a single slope without vertical curve has greater accident rate than those with vertical curve, and that sections with 1 vertical curve are higher in the accident rate than those with over 2 vertical curve. For the sections with 1 vertical curve, SAG sections are higher than CREST sections and for the previous straight section of horizontal curve are higher than curved ones. In particular, when the road surface is wet, the accident rate is closely related with SAG vertical curves or leftward horizontal curved sections. This study will have meanings that it proposes the importance of design of road alignment by taking consideration of 3D synthetic alignment conditions for improvement of the road safety.

Cognitive Evaluation of Geometrical Structure on Express Highway with Driving Simulator (차량시뮬레이터를 이용한 고속도로 복합선형구간에서의 운전자 감성평가)

  • 이병주;박민수;이범수;남궁문
    • Journal of Korean Society of Transportation
    • /
    • v.21 no.4
    • /
    • pp.91-101
    • /
    • 2003
  • This study modeled 4-lane highway in three-dimensional virtual reality in order to overcome difficulties of field experiment. and the research subject was placed in a driving simulator. We survey the driver's cognitive characteristics to the alignment changes in the three-dimensional virtual reality highway. Especially, maximizing the identity of driving movements and virtual scenery on the basis of the data obtained by dynamic analysis module. we minimized simulator sickness for the graphic module of driving simulator. And we carried out cognitive evaluation on the basis of adjective words extracted by dictionary and the opinion of specialist. In this study LISREL model was used to detect the causal relation between geometry and safety in cognitive side, and found that geometric change affects the safety of drivers by static and dynamic road safety model in three-dimensional combined alignments. As the result, for constructing safety road. we consider drivers' cognitive characteristics as human factors in road design, and we think that they are very important factors to improve road safety.

Nonlinear Analysis of Space Trusses Using the Combined Arc-Length Method (복합 호장법을 이용한 공간 트러스의 비선형 해석)

  • 석창목;권영환
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.3
    • /
    • pp.361-369
    • /
    • 2001
  • This paper deals with numerical efficiency of nonlinear solution technique for space trusses. It will propose the combined Arc-length method to trace structural behavior after reaching buckling load as opposed to the current Arch-length method. The combined Arc-length method uses the current stiffness parameter as a control variable. It uses Secant-Newton method in stable path and applies Arc-length method in unstable path. To evaluate efficiency of solution technique, the accuracy of solution, convergence, and computing time concerning illustrative numerical examples are compared with the current Arc-length method. It show that the combined Arc-length method, as proposed in this paper, is superior to the current Arc-length method in numerical nonlinear analysis.

  • PDF

Driving Methology for Smart Transportation under Longitudinal and Curved Section of Freeway (스마트교통시대의 종단 및 횡단 복합도로선형 구간에서의 가감속 시나리오별 최적주행 방법론)

  • Yoon, Jin su;Bae, Sang hoon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.3
    • /
    • pp.73-82
    • /
    • 2017
  • As of December 2016, the number of registered automobiles in Korea exceeds 21million. As a result, greenhouse gas emission by transportation sector are increasing every year. It was concluded that the development of the driving strategy considering the driving behavior and the road conditions, which are known to affect the fuel efficiency and the greenhouse gas emissions, could be the most effective fuel economy improvement. Therefore, this study aims to develop a fuel efficient driving strategy in a complex linear section with uphill and curved sections. The road topography was designed according to 'Rules about the Road Structure & Facilities Standards'. Various scenarios were selected. After generating the speed profile, it was applied to the Comprehensive Modal Emission Model and fuel consumption was calculated. The scenarios with the lowest fuel consumption were selected. After that, the fuel consumption of the manual driver's driving record and the selected optimal driving strategy were compared and analyzed for verification. As a result of the analysis, the developed optimal driving strategy reduces fuel consumption by 21.2% on average compared to driving by manual drivers.

Bootstrapping Composite Quantile Regression (복합 분위수 회귀에 대한 붓스트랩 방법의 응용)

  • Seo, Kang-Min;Bang, Sung-Wan;Jhun, Myoung-Shic
    • The Korean Journal of Applied Statistics
    • /
    • v.25 no.2
    • /
    • pp.341-350
    • /
    • 2012
  • Composite quantile regression model is considered for iid error case. Since the regression coefficients are the same across different quantiles, composite quantile regression can be used to combine the strength across multiple quantile regression models. For the composite quantile regression, bootstrap method is examined for statistical inference including the selection of the number of quantiles and confidence intervals for the regression coefficients. Feasibility of the bootstrap method is demonstrated through a simulation study.

Evaluation of the Response of BRM Analysis with Spring-Damper Absorbing Boundary Condition according to Modeling Extent of FE Region for the Nonlinear SSI Analysis (비선형 SSI 해석을 위해 Spring-Damper 에너지 흡수경계조건을 적용한 BRM의 유한요소 모델링 범위에 따른 응답평가)

  • Lee, Eun-Haeng;Kim, Jae-Min;Jung, Du-Ri;Joo, Kwang-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.6
    • /
    • pp.499-512
    • /
    • 2016
  • The boundary reaction method(BRM) is a substructure time domain method, it removes global iterations between frequency and time domain analyses commonly required in the hybrid approaches, so that it operates as a two-step uncoupled method. The BRM offers a two-step method as follows: (1) the calculation of boundary reaction forces in the frequency domain on an interface of linear and nonlinear regions, (2) solving the wave radiation problem subjected to the boundary reaction forces in the time domain. In the time domain analysis, the near-field soil is modeled to simulate the wave radiation problem. This paper evaluates the performance of the BRM according to modeling extent of near-field soil for the nonlinear SSI analysis of base-isolated NPP structure. For this purpose, parametric studies are performed using equivalent linear SSI problems. The accuracy of the BRM solution is evaluated by comparing the BRM solution with that of conventional SSI seismic technique. The numerical results show that the soil condition affects the modeling range of near-field soil for the BRM analysis as well as the size of the basemat. Finally, the BRM is applied for the nonlinear SSI analysis of a base-isolated NPP structure to demonstrate the accuracy and effectiveness of the method.

Theoretical Investigation on the Stress-Strain Relationship for the Porous Shape Memory Alloy (기공을 갖는 형상기억합금의 응력 및 변형률 관계에 대한 이론적 고찰)

  • Lee Jae-Kon;Yum Young-Jin;Choi Sung-Bae
    • Composites Research
    • /
    • v.17 no.6
    • /
    • pp.8-13
    • /
    • 2004
  • A new three-dimensional model fur stress-strain relation of a porous shape memory alloy has been proposed, where Eshelby's equivalent inclusion method with Mori-Tanaka's mean field theory is used. The predicted stress-strain relations by the present model are compared and show good agreements with the experimental results for the Ni-Ti shape memory alloy with porosity of 12%. Unlike linear stress-strain relations during phase transformations by other models from the literature, the present model shows nonlinear stress-strain relation in the vicinity of martensite finish region.

A Study on the Failure Mechanisms of the Mixed-face Tunnels in Decomposed Granite (화강토지반내 복합막장터널의 파괴메카니즘 연구)

  • 신종호;이인근
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.4
    • /
    • pp.317-329
    • /
    • 2001
  • 서울지하철 터널의 상당 구간이 막장면이 풍화토에서 풍화암까지 변화하는 복합화강토지반에 건설되어 왔다. 화강암풍화지반은 심도에 따라 강도의 변화가 크며, 수위가 높고 투수성 지반인 특징을 갖는다. 터널은 주로 비원형 배수터널로 설계되고 NATM 공법으로 시공되었다. 이와 같은 여건의 터널현장에서 발생하였던 붕괴사례를 조사한 결과, 대부분의 붕괴가 터널 어깨 부근으로부터 시작되었고, 구조적으로 완전하지 않은 라이닝, 그리고 지하수와의 연관성 등의 공통적 특징이 확인되었다. 이러한 터널문제는 지반조건, 시공조건, 터널형상 등 경계조건이 복잡하여 한계평형 해석과 같은 종래의 해석적 방법으로 터널안정을 검토하기가 용이하지 않다. 그 가장 큰 이유중의 하나는 터널의 파괴메카니즘에 대한 분명한 정보를 알 수 없는데 있다. 파괴메카니즘의 조사에는 전통적으로 원심모형시험법이 많이 사용되어 왔다. 그러나 화강토지반내의 터널처럼 복잡한 경계조건을 갖는 터널문제에는 적용하기 어렵다. 따라서 이에 대한 하나의 대안으로서 본 논문에서는 지반거동의 비선형성을 고려하는 Coupled 수치해석법을 이용하여 파괴메카니즘을 조사하였다. 수치해석결과의 증분변위벡터, 누적소성편차변형률 그리고 속도특성치(velocity characteristics)의 분석을 통해 실제 붕괴사례와 잘 일치하는 명확한 파괴메카니즘을 파악할 수 있었다. 이로부터 복잡한 경계조건을 갖는 터널 문제의 안정해석을 위한 파괴메카니즘을 조사하는 수치해석적 접근방법을 제시하였다.

  • PDF

Emulator Circuit for SQUID Sensor (스퀴드 센서 이뮬레이터 회로)

  • Ahn, Chang-Beom;Park, Ho-Chong;Oh, Seoung-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.2149-2150
    • /
    • 2006
  • FLL 회로는 측정된 신호를 voltage to current converter를 거쳐 feedbak coil에 인가함으로써 외부 자장을 상쇄하여 SQUID의 동작점을 원점으로 회귀시켜 선형 구간을 유지하도록 하는 역할을 한다. FLL회로의 동자 범위와 특성을 분석하기 위해서는 일반적인 time-delayed feedback 회로와 사용된 OP amp의 slew rate, filter 의 amplitude 및 위상 특성, SQUID의 critical current, pickup coil 및 SQUID의 inductance 등 다양한 파라미터를 고려하여야 한다. 이러한 SQUID 회로의 복합적인 특성을 SQUID 에뮬레이터를 사용함으로써 FLL 회로를 손쉽게 설계할 수 있고, 또한 회로의 최적화도 쉽게 이를 수 있다. 또한 초전도에서 동작하는 SQUID 나 자기 차폐실이 없어도 FLL 회로 등을 개발할 수 있기 때문에 생체자기시스템의 개발 초기 단계에 널리 활용될 수 있다. 따라서 이 논문의 목적은 FLL을 포함한 SQUID 제어 회로를 SQUID 센서와 분리하기 위한 방법을 제안하는 것으로 자기적으로 coupling되어 있는 feedback 회로를 회로적으로 addition을 수행하게 함으로써 SQUID와 분리하여 회로의 동작 및 특성을 측정할 수 있다.

  • PDF