• Title/Summary/Keyword: 복합막

Search Result 799, Processing Time 0.027 seconds

Study on Mixing Characteristic and Rheology of Polymer/Graphite Composites for a Bipolar Plate of Polymer Electrolyte Membrane Fuel Cell (고분자 전해질막 수소 연료 전지 분리판 용 고분자/흑연 복합 재료의 혼합 및 유변학적 특성에 관한 연구)

  • Yoo, Tae-Hyun;Kim, Dong-Hak;Son, Young-Gon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.10
    • /
    • pp.4673-4678
    • /
    • 2011
  • In this paper, studies on a mixing characteristic and viscosity measurement of polymer/graphite composites for a bipolar plate of the polymer electrolyte membrane fuel cell were presented. Since the materials for the bipolar plate should be electrically conductive, contents of solid graphite in the composite are very high. As a consequence, a viscosity of the polymer/graphite composite used for the bipolar plate is very high and the measurement of the viscosity is difficult. Viscosity measurements of the polymer/graphite composites were not possible because pressure drops were continuously fluctuated during the viscosity measurements when a conventional capillary die was used. After the die design was optimized, the steady state pressure drop could be achieved, but the viscosity thus measured was not reproducible. After many trials with different experimental techniques, it was found that melt blending of the grinded powder mixtures of both PET and graphite provides reproducible viscosity measurements and electric conductivities of the polymer/graphite composites.

The Experimental Study on Preparation Characteristics of Self-healing Microcapsules for Mixing Cement Composites Utilizing Liquid Inorganic Materials (액상 무기재료를 활용한 시멘트 복합재료 혼합용 자기치유 마이크로 캡슐의 제조 특성에 관한 실험적 연구)

  • Choi, Yun-Wang;Oh, Sung-Rok;Kim, Cheol-Gyu;Lim, Hak-Sang
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.4
    • /
    • pp.236-244
    • /
    • 2018
  • In this study, we tried to fabricate self - healing microcapsules using liquid inorganic materials which can be mixed directly with cement composites. The basic properties of the liquid inorganic material were evaluated and microencapsulation was performed. The focus of this paper is on the quality and manufacturing characteristics of cement composites rather than the healing effects of self - healing microcapsules according to mixed capsules. Test results, the self-healing microcapsules encapsulate liquid inorganic material which is stable at room temperature and has high crack followability, and the yield is over 90%. The size of self - healing microcapsule was able to change according to the synthetic agitation speed and it was able to secure more than 70% of target size. In addition, the loss of less than 10% was found to occur through the membrane strengthening of self - healing microcapsules, and it could be reduced by 50% compared with the case without membrane strengthening.

Behavior of Mooring Line of Silt Protector According to the Change of Sea Level (조위변화에 따른 오탁방지막 계류라인의 거동)

  • 홍남식;김정윤
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.14 no.3
    • /
    • pp.232-239
    • /
    • 2002
  • This paper studies the behavior of mooring line of silt protector according to the change of sea level. It is found from the analysis of the behavior that if the taut cable length has been determined appropriately within the range of safety factor, the tensioned cable has almost constant tension regardless of the water depth. The whole structure, however, becomes unstable due to the loss (zero tension) of the released cable tension. It is also recognized from the investigation for the effect of intial straight line angle on the behavior of mooring line that the design through the conceptually combined consideration of the cable tension, total scope and buoy deflection has to be required in the mooring analysis. Finally, the material of cable is not damaged because the cable tension is reduced by attached shellfish, but the whole structure may be also unstable by the effect on the anchor angle, total scope and buoy deflection.

Structural and Thermal Properties of Polysulfone Membrane Including Graphene (그래핀을 포함하는 폴리설폰 멤브레인의 구조 및 열 특성)

  • Choi, Hyunmyeong;Choi, Yong-Jin;Sung, Choonghyun;Oh, Weontae
    • Membrane Journal
    • /
    • v.28 no.1
    • /
    • pp.37-44
    • /
    • 2018
  • Polysulfone composites including graphene were prepared, and their thermal characteristics in membrane states were analyzed by using a custome-made residual stress analyzer and a thermal diffusivity analyzer based on laser flash method. The residual stress analysis was carried out on the polysulfone composite films deposited on Si (100) substrates for 1 cycle of heating and cooling runs. The flat membrane of graphene-embedded polysulfone composites were prepared by the phase transfer method in distilled water and the thermal conductivity was separately measured in the out-of-plane and the in-plane directions. The residual stress of the graphene-embedded polysulfone film was gradually decreased with increasing graphene loading and the out-of-plane thermal conductivity was distinguished from the in-plane thermal conductivity in the flat membranes. These thermal characteristics are caused by the structural uniqueness of graphene and the micro-void structures formed during membrane fabrication.

Study on liquified waste(NaOH) separation/recovery and reuse from textile mercerization process by combined membrane filtration technology (복합여과막 기술을 이용한 머서라이징공정에서 발생되는 가성소다 폐액의 분리회수 및 재활용에 관한 연구)

  • Ryu, Seung-Han;Lee, Sang-Hun;Shin, Dong-Hoon;Park, Joon-Hyung;Jo, Suk-Jin;Lee, Sun-Ho;Ryu, Choong-Ki;Park, Wan-Sik
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2012.03a
    • /
    • pp.119-119
    • /
    • 2012
  • 섬유염색산업 중 면섬유의 염색과정에서 발생되는 머서라이징 폐액은 폐수처리장의 pH(수소이온농도)를 올리는 주원인이 되고 있어, 높은 pH에 따른 폐수처리 부과금이나 황산을 이용한 폐수 중화에 사용되는 약품비용이 과다하게 소요되고 있으며, 머서라이징공정에 사용되는 약품인 가성소다 비용이 계속 증가하고 있어, 기업의 환경처리비용 및 약품소모비용에 대한 부담이 매우 큰 실정이다. 본 기술은 머서라이징 폐액에 멤브레인 공정에 적용하여 폐가성소다로부터 가성소다를 회수할 뿐만 아니라, 회수된 가성소다를 다시 머서라이징 공정에 재이용할 수 있도록 하여 약품 절감효과 뿐만 아니라 폐수의 발생량과 오염물질의 농도의 획기적인 저감이 가능한 것이다. 본 연구에서는 서로 다른 기공크기를 갖는 막을 적용하여 투과플럭스, 부피회수율, 부유물질 및 유기물 제거율, 가성소다회수율, 파울링지수 등을 고려하여 폐수 특성에 맞는 가장 적합한 막을 선정하고, 각각의 막에 대하여 온도조건, 압력조건, 화학세정 등의 운전변수를 최적화, 고효율 폐알카리 회수 장치의 경제성 및 기술적 타당성 평가를 통한 가성소다 회수공정을 구성하였다.

  • PDF

C-V Characteristics of Oxidized Porous Silicon (다공성 실리콘 산화막의 C-V 특성)

  • Kim, Seok;Choi, Doo-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.5
    • /
    • pp.572-582
    • /
    • 1996
  • The porous silicon was prepared in the condition of 70mA/cm2 and 5.10 sec and then oxidized at 800~110$0^{\circ}C$ MOS(Metal Oxide Semiconductor) structure was prepared by Al electrode deposition and analyzed by C-V (Capacitance-Voltage) characteristics. Dielectric constant of oxidized porous silicon was large in the case of low temperature (800, 90$0^{\circ}C$) and short time(20-30min) oxidation and was nearly the same as thermal SiO2 3.9 in the case of high temperature (110$0^{\circ}C$) and long time (above 60 min) It is though to be caused byunoxidized silicon in oxidized porous silicon film and capacitance increase due to surface area increment effect.

  • PDF

Characteristics of Heat/Mass Transfer and Film Cooling Effectiveness Around a Shaped Film Cooling Hole (변형된 단일 막냉각홀 주위에서의 열/물질전달 및 막냉각효율 특성)

  • Rhee, Dong Ho;Kim, Byunggi;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.5
    • /
    • pp.577-586
    • /
    • 1999
  • Two problems with jet injection through the cylindrical film cooling hole are 1) penetration of jet into mainstream rather than covering the surface at high blowing rates and 2) nonuniformity of the film cooling effectiveness in the lateral direction. Compound angle injection is employed to reduce those two problems. Compound angle injection increases the film cooling effectiveness and spreads more widely. However, there is still lift off at high blowing rates. Shaped film cooling hole is a possible means to reduce those two problems. Film cooling with the shaped hole is investigated in this study experimentally. Film cooling hole used in present study is a shaped hole with conically enlarged exit and Inlet-to-exit area ratio is 2.55. Naphthalene sublimation method has been employed to study the local heat/mass transfer coefficient and film cooling effectiveness for compound injection angles and various blowing rates around the shaped film cooling hole. Enlarged hole exit area reduces the momentum of the jet at the hole exit and prevents the penetration of injected jet into the mainstream effectively. Hence, higher and more uniform film cooling effectiveness values are obtained even at relatively high blowing rates and the film cooling jet spreads more widely with the shaped film cooling hole. And the injected jet protects the surface effectively at low blowing rates and spreads more widely with the compound angle injections than the axial injection.

Membrane Application of Poly(lactic acid) (Poly(lactic acid)의 분리막에의 응용)

  • Nam Sang-Yong;Park Ji-Soon;Rhim Ji-Won;Dorgan J.R.
    • Membrane Journal
    • /
    • v.16 no.2
    • /
    • pp.85-105
    • /
    • 2006
  • Poly(lactic acid) is a linear aliphatic thermoplastic polyester, produced by the ring-opening polymerization of lactides and the lactic acid monomers, which are obtained from the fermentation of sugar feed stocks, corn, etc. PLA has high mechanical, thermal plasticity, fabric-ability, and biocompatibility, So PLA is a promising polymer far various end-use applications. In recent time, the intercalation of polymers from either solution or the melt in the silicate galleries of clay is the best technique to prepare nanocompoiste material which often exhibit remarkable improvement of mechanical, thermal, optical and physicochemical properties when compared with the pure polymer or conventional composites. Layered silicate is naturally abundant, economic, and more importantly benign to the environment.

Polymer/Inorganic Nanohybrid Membrane on Lithium Metal Electrode: Effective Control of Surficial Growth of Lithium Layer and Its Improved Electrochemical Performance (리튬 금속 전극상 고분자/무기물 나노복합막 형성: 리튬층의 효과적 표면성장 제어 및 전기화학적 특성 향상)

  • Jeong, Yohan;Seok, Dohyeong;Lee, Sanghyun;Shin, Weon Ho;Sohn, Hiesang
    • Membrane Journal
    • /
    • v.30 no.1
    • /
    • pp.30-37
    • /
    • 2020
  • Polymer/inorganic composites were used as a protective layer of lihitum metal electrode for effective suppression of lithium dendrite. PVDF-HFP was used as an polymer material and TiO2 nanoparticle was used as an inorganic material. PVDF-HFP is a highly flexible polymer that acts as a matrix of inorganic materials while TiO2 nanoparticle improves the mechanical strength and ion conductivity of the protective layer. The as-synthesized protective hybrid membrane exhibited good dispersion of TiO2 in the PVDF-HFP matrix by SEM, AFM and XRD analyses. Furthermore, the electrochemical analysis showed that the polymer-inorganic composite retained high coulombic efficiency of 80% and low overpotential, less than 20 mV until the 100th cycles due to the improved mechanical properties and ion conductivity in comparison to the control sample (untreated and PVDF-HFP polymers/Cu).

Poly(vinyl alcohol)-based Polymer Electrolyte Membrane for Solid-state Supercapacitor (고체 슈퍼캐퍼시터를 위한 폴리비닐알콜 고분자 전해질막)

  • Lee, Jae Hun;Park, Cheol Hun;Park, Min Su;Kim, Jong Hak
    • Membrane Journal
    • /
    • v.29 no.1
    • /
    • pp.30-36
    • /
    • 2019
  • In this study, we reported a solid-state supercapacitor consisting of titanium nitride (TiN) nanofiber and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT-PSS) conducting polymer electrode and poly(vinyl alcohol) (PVA)-based polymer electrolyte membrane. The TiN nanofiber was selected as electrode materials due to high electron conductivity and 2-dimensional structure which is beneficial for scaffold effect. PEDOT-PSS is suitable for organic/inorganic composites due to good redox reaction with hydrogen ions in electrolyte and good dispersion in solution. By synergetic effect of TiN nanofiber and PEDOT-PSS, the PEDOT-PSS/TiN electrode showed higher surface area than the flat Ti foil substrate. The PVA-based polymer electrolyte membrane could prevent leakage and explosion problem of conventional liquid electrolyte and possess high specific capacitance due to the fast ion diffusion of small $H^+$ ions. The specific capacitance of PEDOT-PSS/TiN supercapacitor reached 75 F/g, which was much higher than that of conventional carbon-based supercapacitors.