The process of conveying of soil with the open auger to cover the seed completly with less power was reviewed by theoretical analysis. The power efficiency, the reasonable range of RPM of the open auger and the velocity of soil conveying to the direction of the shaft are examined to establish the extent of characteristics of the open auger performance. The results of theoretical analysis and application of similitude are as follows: 1. It is possible to predict the power efficiency by the following equation; ${\eta}_p={\frac{P_n}{P_g}}=({\frac{{\omega}_s}{{\omega}_a}}){\cdot}tan{\gamma}{\frac{mg}{(F_mcos{\alpha}+F_scos{\gamma})}}$ 2. The reasonable range of the revolutions per minute of the open auger was presented as follow to cover completely with less power ; $$\frac{4d(L_a-L_i){\cdot}V_w}{{\pi}(D_o^2-D_s^2){\cdot}r{\cdot}{\frac{{\omega}_s}{{\omega}_a}}{\cdot}tan{\gamma}}{{\leq_-}}{\omega}_a{{\leq_-}}({\frac{{\omega}_a}{{\omega}_s}}){\sqrt{\frac{g}{r}}}$$ 3. The velocity of soil conveying to the direction of the auger shaft may be calculated by the equation; $V_h=({\frac{{\omega}_s}{{\omega}_s}})V_a{\cdot}tan{\gamma}$ 4. The factor of RPM was more important than other factors on the power efficiency.
The Geotextiles have been used for the protection of Geomembrane and the prevention of clogging phenomenon; however, the material can be easily damaged by construction equipments. It generally recommended to use at least $500g/m^2$ of Geotextile in Korea landfill, but few researcher were performed about the damage of Geotextile. Therefore, we intended to evaluate the potential damage of Geotextile by the traffic load simulating the final cover system in a field scale. Tensile strength and strain were appraised to understand the degree of damaged Geotextile. The tests were conducted under the condition of cross direction of Geotextile. Four different weight of Geotextile was used for the evaluation $500g/m^2$, $700g/m^2$, $1,000g/m^2$ and $1,500g/m^2$. The initial strain of $500g/m^2$ of Geotextile showed 50% that did not meet the standard 60%. The strain of $700g/m^2$ of Geotextile was below the standard after the traffic load test; however, the others met the requirement in the test. In conclusion, the weight of Geotextile used in landfill to protect the Geomembrane should be at least $700g/m^2$ in a view of strain requirement. We expect this study provides fundamental information for the construction of Geotextile in landfill.
This study presents a relationship between gas quantity and measurement resistance using the bubble meter, the water head indicator and the rotor meter from the gas vent sanitary landfill. From the one-dimensional analyses and experiments, the below results have been obtained. The gas volume sourcing from the gas vent depends on the permeability of final cover soil, its cover depth and distance between the gas vents. The total gas volume producing in the interested domain may be accurately measured by the bubble meter, the water head indicator and the rotor meter if the clay is used for the final cover soil. The required times approaching to the steady-state are different with respect to the flow meters, one day is for the bubble meter and the water head indicator and one hour for the rotor meter.
Journal of the Korean Society of Marine Environment & Safety
/
v.12
no.2
s.25
/
pp.107-113
/
2006
Water treatment plant sludge occurred in sedimentation and inverse wash process is generally disposed by ocean dumping or reclamation after dehydration processing using mechanical or natural dry method. Recently, ocean dumping of sludge is limited actually by London Convention. Physical, chemical, and geotechnical characteristics of water treatment plant sludge were analyzed by experiments. The possibilities for recycling of the dehydration sludges as materials for covering sanitary landfill were examined. Experiments performed with sludges mixed with general soil to improved the sludge properties are the hydrometer analysis, the liquid and plastic limit test, the specific gravity test, the compaction test, and the unconfined compression test. The value of ${\gamma}_{dmax}$ is increased and OMC(Optimum Moisture Content) is lessened with mixed sludge. The value of maximum compressive strength and friction angle are increased and the cohesion is decreased with mixed sludge. The ratio between sludge and soil in mixed sludge was 3:7 and the strength of mixed sludge showed $3.6kg/cm^2$. These results satisfy the regulation of U.S. E.P.A regarding materials for covering sanitary landfill.
In general, pipe laying works are performed by constructing underground facilities such as pipes and then refilling the rest of the area with sand or soil. However, there are many problems in the compaction process such as difficulties in tampering around the underground facility and low compaction efficiency. Such problems cause deformation and damage to the underground pipes during refilling work and ultimately cause road sinks. Construction methods using CLSM are one of the typical methods to solve these issues, and recently, studies on CLSM using coal ash, which has similar engineering properties as sand, have been actively performed to protect environment and recycle resources. While many studies have been conducted to recycle fly ash in many ways, the demand for recycling bottom ash is increasing as most of the bottom ash is not recycled and reclaimed at ash disposal sites. Therefore, in order to find bottom ash applications using eco-friendly soil binders that are environmentally beneficial and conform with CLSM standards, this study investigated flow characteristics and strength change characteristics of eco-friendly soil binders, weathered granite soil, a typical site-generated soil, bottom ash, and fly ash mixed soil and evaluated the soil pollution to present CLSM application methods using bottom ash.
When the term conservation is used with regard to excavated features, it means not only conservation but also restoration. Restoring the features here does not imply restoring their original form but restoring their form at the moment of excavation. That means, the conservation of excavated features includes the concept of both reparation and restoration. The way of conserving excavated features can be largely categorized into on-site conservation and transfer conservation. On-site conservation means to conserve excavated features as they were at the excavation site. It can be further categorized into soil-covered on-site conservation, in which excavated features are covered with soil to prevent them from being damaged, and exposed on-site conservation in which the features were conserved as they were exposed. Transfer conservation is operated on the premise that excavated features are transferred to another place. It can be further categorized into original form transfer, transcribing transfer, reproduction transfer, and dismantlement transfer. Original form transfer refers to the method of moving the original forms of excavated features to another place. Transcribing transfer refers to moving some of the surfaces of excavated features to another place. Reproduction transfer refers to restoring the forms of excavated features in another place after copying the forms of excavated features at the excavation site. Dismantlement transfer refers to the method of restoring excavated features in a place other than the excavation site in the reverse order of dismantlement after dismantling the features at the excavation site. The most fundamental issue regarding conserving excavated features is the conservation of their original forms. However, the conservation of excavated features tends to be decided depending on a variety of conditions such as society, economy, culture, and local situations. In order to conserve excavated features more effectively, more detailed and specialized conservation methods should be created. Furthermore, continuing research is needed to find the most effective way of conserving them through exchange with other neighboring academic fields and scientific technology.
As a result of population growth and economic growth, household and industrial wastes continue to rapidly increase every year. Especially, sewage sludge produced at final stage is increasing with the constant construction and putting in good order of the sewage plant. In addition to the government's prohibition for filling up the sludge, it became more and more difficult to discharge wastes to the sea as London Dumping Convention '96 came into effect. And sewage sludge and the livestock wastes are expected to be thoroughly prohibited from discharging to the sea from 2012. So we need desperately economical and useful alternatives to compact and reuse these wastes. The purpose of this study is to evaluate the utilization of solidified sludge-soil mixture as an enhancement and covering material. To determine the proper mixed ratio of solidified sludge, this study conducted basic physical properties tests, compaction tests, uniaxial compression tests, and permeability test. It was found that the higher the ratio of solidified sludge, the lower the coefficient of permeability. Upon the results of particle size distribution, the mixed ratio of solidified sludge that meet the enhancement material condition was 59% or lower for SP granite soil and 48% or lower for SM granite soil respectively.
Due to population growth and industrial development, the amount of industrial waste is increasing every year. In particular, in a thermal power plant using finely divided coal, a large amount of coal ash is generated after combustion of the coal. Among them, fly ash is recycled as a raw material for cement production and concrete admixture, but about 20% is not utilized and is landfilled. Due to the continuous reclamation of such a large amount of coal ash, it is required to find a correct treatment and recycling plan for the coal ash due to problems of saturation of the landfill site and environmental damage such as soil and water pollution. In recent years, the use of a fluid embankment material that can exhibit an appropriate strength without requiring a compaction operation is increasing. The fluid embankment material is a stable treated soil formed by mixing solidifying materials such as water and cement with soil, which is the main material, and has high fluidity before hardening, so compaction work is not required. In addition, after hardening, it is used for backfilling or filling in places where compaction is difficult because higher strength and earth pressure reduction effect can be obtained compared to general soil. In this study, the possibility of use of fluidized soil using high water content cohesive soil and coal ash is considered. And it is intended to examine the flow characteristics, strength, and bearing capacity characteristics of the material, and to investigate the effect of reducing the earth pressure when applied to an underground burial.
The research was conducted to evaluate a different seedling establishment of rice germplasms which were obtained from the IRRI (International Rice Research Institute) under the direct seeded condition. There was highly significant difference in terms of statistical analysis among cultivars. The seedling establishment of cultivars tested was the highest with ASD1 > IR50 > IR72 > Taothabi > Uplri5 > CO25 > Dula > Moroberakan. The difference of seedling establishment among cultivars particular in dry condition was high between ASD1 and Moroberakan and other cultivars.
Journal of the Korean Society of Groundwater Environment
/
v.4
no.4
/
pp.191-198
/
1997
The Seokdae municipal waste landfill was filled from 1987 to 1993. A disk tension infiltrometer was used to estimate the saturated hydraulic conductivity of the upper part of landfill cover. The estimated saturated hydraulic conductivity ranges from 2.2$\times$$10^{-4}$~8.1$\times$$10^{-3}$ cm/sec. Net infiltration through the Seokdae municipal waste landfill is estimated from precipitation data, hydraulic conductivity and reported landfill profiles by using an unsaturated flow model, HYDRUS. Total infiltration rate is estimated to be 939 ㎥/day. Leachate level rise and leachate seepage are computed by adopting a simple model.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.