• Title/Summary/Keyword: 복잡계 학습

Search Result 49, Processing Time 0.024 seconds

Review on design strategies for reflection-scaffolding tools in the computer supported collaborative learning (네트웍 기반 학습에서 협력적 성찰지원 도구 설계 전략 탐색)

  • Kim, Dong-Sik;Lee, Seung-Hee;Kim, Jee-il
    • The Journal of Korean Association of Computer Education
    • /
    • v.5 no.3
    • /
    • pp.89-106
    • /
    • 2002
  • One of the key success factors for Computer Supported Collaborative Learning(CSCL) environments relies on collaborative reflection. Reflection refers to the active, intellectual thinking for monitoring one's own learning process and continuous internal activities of exploring oneself for new learning experiences. Also, reflective activities are closely related not only with the individual aspect of internal exploration but also with the social aspect of learner-learner interaction. This paper suggests four essential macro-level design strategies such as (1)facilitating collaborative awareness, (2)making thinking visualization, (3)negotiation-mediated knowledge construction, (4)providing metacognitive awareness cues or Questions for scaffolding collaborative reflection in the CSCL environments and made some implications for key functional features for the design and development of system components for CSCL.

  • PDF

A Study on Target Tracking using Neural Networks (신경회로망을 이용한 물체 추적에 관한 연구)

  • 육창근;문옥경;차의영
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1998.10c
    • /
    • pp.426-428
    • /
    • 1998
  • 본 논문은 움직임 추정기법 중의 하나인 차영상 분석 기법을 기반으로한 이동 물체 추적 시스템을 제안한다. 실세계와 같은 복잡한 환경에서의 적응성을 높이기 위해 동적인 배경 추출 방법을 제안하고, 이를 바탕으로한 차영상 분석 기법을 이용하여 이동 물체를 탐지한 후 개선된 인공신경망의 경쟁학습 모델인 ART2 학습알고리즘을 이용하여 추적한다. 또한 이동 물체의 평가도 값이 아닌 RGB 컬러정보를 이용한 물체의 특징 벡터를 구한다. 이러한 특징 벡터들은 이동 물체의 모양이나 명암의 변화를 반영한다. 이러한 정보의 변화에 적응성을 갖게 하기위해 개선된 ART2를 사용한다. 그리고 실제 환경에서 보행자를 탐지, 추적하는 실험 결과 Gray 영상보다 정확한 추적이 가능하였다.

  • PDF

Strategy on Web-based Presentation Learning to Improve Interaction (상호작용 증진을 위한 웹 기반 발표학습 전략)

  • Lee, Jae-Un;Kim, Seong-Sik
    • Journal of the Korea Computer Industry Society
    • /
    • v.8 no.4
    • /
    • pp.207-220
    • /
    • 2007
  • Recording to development of info-communication, recent educational paradigm asks not for a passive transmitter but an active constructor who can solve the various complicated problems in real situations. Such a change asks for the educational setting which includes sharing ideas and information rather than possessing them by themselves. Learning through presentation has many problems which are few chances of presentation as well as reusing of presentation data. etc. This study suggested the strategy which are promoting interactions through presentation class and using practically. For this, role of the presentation data provider and learner was suggested, also strategies to implement of the presentation learning support system step by step. Through the strategy of this paper could maintain the active communicating relationship between the learners. Without the limitation of the time and space, the real time communication is made while looking at the presentation data of the other party, the teaming effect by the presentation teaming strategy is expected to be high.

  • PDF

Analyzing the Co-occurrence of Endangered Brackish-Water Snails with Other Species in Ecosystems Using Association Rule Learning and Clustering Analysis (연관 규칙 학습과 군집분석을 활용한 멸종위기 기수갈고둥과 생태계 내 종 간 연관성 분석)

  • Sung-Ho Lim;Yuno Do
    • Korean Journal of Ecology and Environment
    • /
    • v.57 no.2
    • /
    • pp.83-91
    • /
    • 2024
  • This study utilizes association rule learning and clustering analysis to explore the co-occurrence and relationships within ecosystems, focusing on the endangered brackish-water snail Clithon retropictum, classified as Class II endangered wildlife in Korea. The goal is to analyze co-occurrence patterns between brackish-water snails and other species to better understand their roles within the ecosystem. By examining co-occurrence patterns and relationships among species in large datasets, association rule learning aids in identifying significant relationships. Meanwhile, K-means and hierarchical clustering analyses are employed to assess ecological similarities and differences among species, facilitating their classification based on ecological characteristics. The findings reveal a significant level of relationship and co-occurrence between brackish-water snails and other species. This research underscores the importance of understanding these relationships for the conservation of endangered species like C. retropictum and for developing effective ecosystem management strategies. By emphasizing the role of a data-driven approach, this study contributes to advancing our knowledge on biodiversity conservation and ecosystem health, proposing new directions for future research in ecosystem management and conservation strategies.

Development of Web-based Contents for Electromagnetics Course using Multimedia (멀티미디어를 이용한 웹 기반의 전기자기학 교재 개발)

  • Kim Young-Sun;Choi Kyung;Lee Ki-Sik
    • Journal of Engineering Education Research
    • /
    • v.5 no.2
    • /
    • pp.3-9
    • /
    • 2002
  • Recently, the use of the internet and the web becomes universal. So, many internet applications are made by educators. In this paper, contents about the electromagnetics course which is one of the basic subjects for electrical and electronic fields are dealt. Most textbooks concerned this topic describes the phenomena in mathematical formulas. Naturally, for the students, the understanding of the phenomena is not so easy. For the improvement the educational efficiency, the multimedia techniques such as HTML, pictures, animations and sound are utilized. And also the software developed by authors is available for the analysis or the exercise of various electromagnetic problems. The contents are composed 4 parts : electrostatic fields, magnetostatic fields, time varying fields propagation of waves.

Forecasting of Runoff Hydrograph Using Neural Network Algorithms (신경망 알고리즘을 적용한 유출수문곡선의 예측)

  • An, Sang-Jin;Jeon, Gye-Won;Kim, Gwang-Il
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.4
    • /
    • pp.505-515
    • /
    • 2000
  • THe purpose of this study is to forecast of runoff hydrographs according to rainfall event in a stream. The neural network theory as a hydrologic blackbox model is used to solve hydrological problems. The Back-Propagation(BP) algorithm by the Levenberg-Marquardt(LM) techniques and Radial Basis Function(RBF) network in Neural Network(NN) models are used. Runoff hydrograph is forecasted in Bocheongstream basin which is a IHP the representative basin. The possibility of a simulation for runoff hydrographs about unlearned stations is considered. The results show that NN models are performed to effective learning for rainfall-runoff process of hydrologic system which involves a complexity and nonliner relationships. The RBF networks consist of 2 learning steps. The first step is an unsupervised learning in hidden layer and the next step is a supervised learning in output layer. Therefore, the RBF networks could provide rather time saved in the learning step than the BP algorithm. The peak discharge both BP algorithm and RBF network model in the estimation of an unlearned are a is trended to observed values.

  • PDF

Illuminant Chromaticity Estimation via Optimization of RGB Channel Standard Deviation (RGB 채널 표준 편차의 최적화를 통한 광원 색도 추정)

  • Subhashdas, Shibudas Kattakkalil;Yoo, Ji-Hoon;Ha, Yeong-Ho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.6
    • /
    • pp.110-121
    • /
    • 2016
  • The primary aim of the color constancy algorithm is to estimate illuminant chromaticity. There are various statistical-based, learning-based and combinational-based color constancy algorithms already exist. However, the statistical-based algorithms can only perform well on images that satisfy certain assumptions, learning-based methods are complex methods that require proper preprocessing and training data, and combinational-based methods depend on either pre-determined or dynamically varying weights, which are difficult to determine and prone to error. Therefore, this paper presents a new optimization based illuminant estimation method which is free from complex preprocessing and can estimate the illuminant under different environmental conditions. A strong color cast always has an odd standard deviation value in one of the RGB channels. Based on this observation, a cost function called the degree of illuminant tinge(DIT) is proposed to determine the quality of illuminant color-calibrated images. This DIT is formulated in such a way that the image scene under standard illuminant (d65) has lower DIT value compared to the same scene under different illuminant. Here, a swarm intelligence based particle swarm optimizer(PSO) is used to find the optimum illuminant of the given image that minimizes the degree of illuminant tinge. The proposed method is evaluated using real-world datasets and the experimental results validate the effectiveness of the proposed method.

Simulation of wetland storage volume using a classification-based artificial intelligence prediction model (분류 기반의 인공지능 예측 모델을 이용한 습지 저류량 모의)

  • Ji yu Seo;Ha eun Jung;Jeong Hoon Lee;Sang Dan Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.270-270
    • /
    • 2023
  • 습지 생태계는 복잡한 물리적 생지화학적 프로세스의 상호작용이 있으나, 습지 생태계의 건강성 회복을 위한 첫 번째 단계는 습지 생태계에서의 물순환에 대한 정확한 이해일 것이다. 또한 지역적인 물 균형 및 생태계 보전에서 습지를 활용하기 위해서도 습지 물순환에 대한 정량적인 이해는 필수적이다. 그러나, 습지 물순환의 이해를 위해 필수적인 관측 자료들은 현장 측정으로 획득하기 어려운 자료이거나 비용적인 문제로 인하여 관측이 어려운 실정이다. 이에 본 연구에서는 Sentinel-2 위성 자료를 활용하여 습지의 유입량을 추정하기 위한 절차를 제시하고자 한다. 이를 위해 한반도 동남부의 낙동강에 위치한 주요 다목적댐의 자료를 활용한 분류 기반의 인공지능 모델이 설계된다. 인공지능의 학습을 위한 입력자료는 아래와 같은 절차에 의해 만들어진다. 1) 다목적댐의 수위-물 체적 관계를 이용하여 수위-수표면적 관계 곡선 도출. 2) 수위-수표면적 관계 곡선과 DEM을 활용하여 물과 육지 영역을 구분하는 식별자를 도출. 3) Sentinel-2 위성 정보와 물-육지 식별자를 비교하는 랜덤 포레스트 모델을 설계. 4) 위성 정보의 물-육지 정보로부터 미계측 습지 지역의 물과 육지를 식별할 수 있는 식별자 도출. 이러한 과정을 경유하여 추정된 습지의 수표면적과 습지 지역의 DEM을 결합함으로써 습지의 수위-수표면적-물 체적 관계 곡선이 산정되어, 최종적으로 습지의 유입량이 모의된다. 모의된 습지 유입량은 다양한 수문 모델의 매개변수를 추정하는데 활용될 수 있을 것이며, 검증된 수문 모델을 활용하여 습지의 물순환의 이해도를 증진시킬 수 있을 것으로 기대된다.

  • PDF

A Neural Networks Model for Flow Forecasting in Nakdong River Basin (낙동강 유역에서의 유량 예측 신경망 모형에 관한 연구)

  • Han, Kun-Yeun;Kim, Dong-Il;Choi, Hyun-Gu;Yoon, Young-Sam
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.1727-1731
    • /
    • 2008
  • 수자원의 효율적인 관리를 위해서는 신뢰성 있는 유량자료의 획득이 대단히 중요하다. 우리나라는 양질의 유량자료를 획득하기 위해 매년 많은 시간과 돈을 투자하고 있으나 자료의 질적인 면에서 만족할 만한 성과를 얻지 못하고 있다. 현재까지 우리나라의 유량자료는 댐의 수문자료와 수량관리 부처인 건교부에서 운영하는 수위표 지점의 수위-유량곡선에서 산출된 자료에 의존하고 있다. 그러나 수위-유량 관계식을 보정하기 위한 유량측정사업이 지속적이지 못하며, 이 관계식은 유량이 적은 저수기 및 갈수기에는 부정확하다는 한계가 있다. 또한, 국립환경과학원 낙동강물환경연구소에서 오염총량관리를 위한 낙동강수계 유량측정사업을 실시하고 있지만, 목적은 낙동강수계의 오염총량관리 단위유역 말단 47개 지점에서 유량측정을 효율적으로 실시하여 수질정책의 기초자료를 제공하는데 있다. 이 자료 역시 오염총량관리를 위하여 유량측정을 실시하여 수자원의 효율적인 관리를 위한 일 유량을 알 수가 없는 한계점을 가지고 있다. 따라서 저수기 및 갈수기에 수질정책의 기초자료를 제공하기 위해서 하천을 포함한 유역의 정확한 강우-유출특성의 파악이 필요하다. 그러나 강우-유출특성 또한 유역 내 강우의 시 공간적 분포가 다르며 그 자가 비선형성이 강하고 여러 변동성을 포함하므로, 강우로부터 하천의 유출량의 정확한 해석이 불가능하다. 그러나 최근 인공지능 분야에서 신호처리, 지능제어 및 패턴인식 등의 수단으로 사용되고 있는 신경망은 학습이라는 최적화 과정을 통해 입력과 출력으로 구성되는 하나의 시스템을 비선형적으로 구축할 수 있으며 이러한 이점을 활용하여 수자원 분야에서 다양하게 적용되고 있다. 본 연구의 목적은 강우-유출자료 및 댐 방류량 자료의 비선형적인 특정을 가장 잘 반영할 수 있는 신경망모형을 적용하여 수질정책의 기초자료를 제공하기 위하여 신뢰성 있는 유량자료를 산정하는 모형을 개발하는 것이다. 이를 위해서 낙동강물환경연구소에서 오염총량관리를 위한 낙동강수계 유량측정 지점 상류의 댐 방류량의 일 방류량자료와 강우자료를 입력 자료로 하여 유량을 예측할 수 있는 유량예측 신경망 모형 FFBN(Flow Forecasting By Neural)을 개발하였다. 그리고 입력 자료로서 장기유출모형인 SWAT의 모의결과를 입력 자료로 추가한 FFBNS(Flow Forecasting By Neural and SWAT)을 개발하였다. 신경망 모형의 구조는 입력층과 출력층 사이에 하나의 은닉층이 존재하는 다층 신경망으로 구성하였으며, 학습단계에서는 오류 역전파 알고리듬 학습방법 중 모멘텀법을 사용하였다. 예측된 유출량을 실측치와의 비교를 위하여 낙본D지점과 낙본 E지점에 대하여 $2005{\sim}2006$년까지의 모의 결과를 낙동 수위측정지점과 구미 수위측정지점의 실측치 통하여 복잡한 비선형성을 가지는 유출 시계열 자료에 대한 효과적인 최적의 신경망모델을 개발하여 유량을 예측하고 적용 가능성을 검토하고자 한다. 모의 결과는 수질정책의 기초자료 제공에 기여할 수 있을 것으로 판단된다.

  • PDF

A Strategy using Writing based on STEAM Instruction for Information Gifted Students' Creative Problem-Solving (정보영재의 창의적 문제해결력을 위한 STEAM 기반 쓰기 활용 전략)

  • Jeon, Su-Ryun;Lee, Tae-Wuk
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.8
    • /
    • pp.181-188
    • /
    • 2012
  • In this paper, we propose an a strategy using writing based on STEAM Instruction for information gifted students' creative problem-solving. It is needed a complex and dynamic interaction of variety elements for creative problem solving. And it should be provided experience encompassing various disciplines thorough convergence education for leading to the these interactions and developing the ability to solve complex problems. Writing has already been verified educational effects in a variety subjects. And writing gives a positive impact on creative problem solving by helping awareness of the problem and encouraging critical thinking. In addition, writing can be used as an effective tool for improving problem solving based on similarities between problem-solving process. Learners will find algorithm thorough the process analyzing and writing experience with high-tech products like vending machines, mobile phones and can learn naturally the principles of various disciplines used in real life. Furthermore, learners will experience interaction, convergence of various thinking and cultivate creative problem- solving skills.