• Title/Summary/Keyword: 보행하중

Search Result 60, Processing Time 0.026 seconds

Estimation of Vibration Plate due to Moving Oscillator in Reinforcement Concrete (이동 가진원에 따른 철근 콘크리트 판에서의 진동평가)

  • Kim, Ie-Sung;Yoon, Seoung-Hyun;Park, Kang-Geun
    • Journal of Korean Association for Spatial Structures
    • /
    • v.7 no.6
    • /
    • pp.83-90
    • /
    • 2007
  • Today, many studies are progressed about source of vibration oscillator in reinforcement concrete structures. Source of vibration oscillator is load when it is happen from walking inhabitant. It is transmitted to another inhabitant through reinforcement concrete plate, and it is type of elastic wave. Those descriptions are ram wave and primary wave, secondary wave, and the are through the surface and inside plate. Analysis studies of those waves are used to piezoelectric materials. But, they are difficult to 3 axial type of transmitting elastic wave in concrete element. In this study, a fundamental study for source estimations of vibration oscillator using micro accelerometer are discussed.

  • PDF

A Study on Modeling for Vibration Serviceability Evaluation (교량의 진동사용성 평가를 위한 모델링에 관한 연구)

  • Lee, Hu-Seok;Ha, Sin-Yong;Hwang, In-Ho;Lee, Jong-Seh
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.39-42
    • /
    • 2010
  • 최근 보행자가 교량의 진동에 의한 불안감을 느끼는 경우가 발생되면서 설계 단계에서 진동에 대한 고려하고 있다. 그러나 설계자는 범용유한요소프로그램에 이동하중을 적용하여 동적응답해석을 하는 것에 어려움을 느끼고 있으며 그 결과 Meister감각곡선에 의한 진동사용성 평가도 정확히 수행되지 않고 있다. 본 연구에서는 설계자들이 수행하는 교량의 진동사용성 평가방법의 간편한 적용을 위하여 이동하중모델 생성툴을 연구하였으며, 범용유한요소프로그램으로 모델링 된 교량의 매개변수를 변화해가며 진동사용성 평가를 수행하였고 연구 결과 중 매개변수의 하나인 보요소의 길이에 따른 진동사용성 평가결과만을 작성하였다. 평가결과 보요소의 길이에 따라 교량에 발생되는 진동과 가속도의 응답치가 다르게 나타났으며, 발생되는 주요주파수 범위도 다르게 해석되었다. 이러한 동적응답의 결과가 다르게 해석되면서 Meister 감각곡선에 의한 평가등급이 차이도 발생되었다. 따라서 정확한 진동사용성 평가를 위해서는 동적응답해석 시 다양한 매개변수에 의한 동적응답의 결과에 대한 연구는 물론 다양한 교량 형식과 그에 맞는 모델링에 대한 많은 연구가 필요할 것으로 사료된다.

  • PDF

A Basic Design and Characterization on Composite Bone Plate for Bone Fracture Healing (골절 치료를 위한 복합재료 고정판 기초 설계 및 특성 평가)

  • Kim, Ju-Ho;Chang, Seung-Hwan
    • Composites Research
    • /
    • v.20 no.5
    • /
    • pp.7-12
    • /
    • 2007
  • This paper aims to enhance the efficiency of bone fracture healing with bone plate made of fiber reinforced composite materials. The composite bone plate was designed as the same dimension and shape as the existing stainless steel bone plate. To find out the appropriate stacking sequence of the composite bone plate the variations of strain distributions were calculated using FE analysis when the bone plates were applied to the fracture site. From the analysis result it was found that the composite bone plate whose Young's modulus is lower than that of metal bone plate gave more uniform strain distribution and provided appropriate condition for callus formation and its development.

Development of advanced technology shoes combined conical top foundation mechanism (팽이기초 메카니즘을 융합한 신개념 신발 개발 연구)

  • Kim, Yeon-Deok;Lee, Ji-Hyun;Kim, Sang-Hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.3
    • /
    • pp.724-731
    • /
    • 2016
  • This paper presents the interdisciplinary study of a combined mechanism on the interactions between ground and foot using bioengineering and geotechnical engineering. A new mechanism of advanced technology shoes, which can be made safe with a comfortable gait on both soft and hard ground, were developed combining the mechanism of conical top foundation. The experimental tests were carried out to verify the developed shoes. The prototype shoes and test grounds were designed and produced to perform the tests. The general existing shoes and advanced technology shoes were used to measure the pressures re-acting the sole during the tests by a special measurement system. The results clearly showed that the pressures acting on the sole of advanced technology shoes were distributed uniformly compared with that of the existing shoes, and were in good agreement with theoretical approach of the new mechanism. Therefore, the advanced technology shoes could allow a safe gait ergonomically by a new mechanism on any ground type. The load transfer could occur by the interaction between ground and shoes. In addition, these results are expected to be useful for the development of an interdisciplinary study of a new mechanism in the future.

The Influences for Change of energy consumption of normal 20s' adults during gait (20대 정상성인의 발목에 부가된 하중이 보행중 에너지 소모도에 미치는 영향)

  • Kim, Yong-Gun;Han, Dong-Uck
    • Journal of Korean Physical Therapy Science
    • /
    • v.7 no.1
    • /
    • pp.285-294
    • /
    • 2000
  • 80 persons who don't have past history of cardiopulmonary and neuromuscular disease. The results were as follow; 1. PCI(Physiological Cost Index) value without loading to ankle were significantly increased compared to 1kg, and 2kg (p<0.01). 2. Female Subjects showed more increased PCI value in without loading and lkg, 2kg loading compared to male subjects (p<0.01). 3. In every PCI condition the difference among height groups was observed (p<0.01). 4. The difference among weight groups in each PCI condition was observed (p<0.01). These results showed that energy consumption was increased according to loading on the ankle during gait so weight of orthosis or prosthesis must be considered when choosing them and during gait training with these ones.

  • PDF

SIMPLE AND EFFICIENT METHODS FOR THE RESPONSE ESTIMATION BY GROUP WALKING LOADS (무리보행하중이 작용하는 건축물의 간편한 응답추정)

  • 김태호;민경원;이동근
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.117-124
    • /
    • 2003
  • Long span structures with low natural frequencies such as shopping malls, large offices, and assembly rooms may experience signification dynamic responses due to human activities. In this study, equations to estimate the magnitudes of group walking loads are derived and a simple procedure to estimate and evaluate the corresponding response of the existing and new building structures subjected to human loads is proposed. The effectiveness of the proposed method is verified analytically using a simple floor and experimentally on a footbridge measuring the structural response induced by group pedestrians. Results indicate that the amplitudes of group walking loads can be easily estimated if the mode shapes are available, and that the corresponding structural responses can be estimated easily by the simple response measurement using the proposed method.

  • PDF

An Optimization of a Walkway Block Structure for Rainwater Harvesting (빗물저장 및 활용을 위한 보도블럭구조의 최적화)

  • Cho, Taejun;Son, Byung-Jik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.1
    • /
    • pp.40-47
    • /
    • 2018
  • Porous walkway blocks are constructed for the purpose already, but reserved water is easily consumed due to the bigger permeability than necessary. Furthermore, porous structure reduces the strength of blocks, which resulting cracking and settlements in walkways. In this study, we suggested a solution for given problems by determination for the location of minimum principal stress in walkway blocks against moving foot loads in order to design and verifying the determined location of minimum principal stress. An optimum design with a verification example for determined location of minimum principal stress have been presented in a two dimensional Block member on elastic foundation for pedestrian walkway for reserving water inside. The minimum value for sum of shear forces is found when ${\times}1$ is 58.58 mm(30% of total span, 200mm), while the minimum deformation is located at ${\times}2=80mm$(70% of total span, 200 mm). In a modified model, When moving boundary condition(walkway foot loads) is located at ${\times}1$(=0 mm), the location of minimum principal stresses is found at 168 mm( 84% of span, 200 mm), in which the stress concentration due to the foot load is modeled as two layers of distributed loads(reactions of foundation modeled as springs). Consequently, zero deformed reservoirs for rainwater on the neutral axis (${\times}2=167mm$) has been determined in the modified model with three dimensional FEM analysis verifications.

Functional analysis of isolated posterior cruciate ligament deficient subjects (후방 십자 인대 단독 손상 환자의 기능적 분석)

  • Kim Jin Goo
    • Journal of Korean Orthopaedic Sports Medicine
    • /
    • v.3 no.1
    • /
    • pp.66-72
    • /
    • 2004
  • Purpose: To evaluate the compensatory mechanism in vivo and develop the treatment guide by performing the comprehensive functional tests of the posterior cruciate ligament (PCL) deficient subjects. Material and Methods: 10 PCL deficient subjects and 10 healthy control group were evaluated. Performed functional tests were range of motion, posterior drawer test, Telos, 30$^{\circ}$ flexion wt-bearing view, KT-1000 arthrometer, gait analysis, EMG test and isokinetic tests. Results: Physical, KT-1000, Telos posterior tests showed significant differences, but 300 full weight bearing lateral view, muscle strength test revealed no difference between two groups. Less knee flexion at initial contact and reduced maximum valgus moment were observed in PCL deficient group. In vertical drop landing, PCL group had increased plantar flexion angle at initial contact. Conclusion: Compensatory mechanisms such as reduced unstable components and absorbing the maximal load of the joint were occurred after PCL insufficiency, which result in good clinical and functional outcomes. Further investigations would be needed to understand the functional adaptations of PCL deficient subjects.

  • PDF

Joint moments and muscle forces during walking with sided load as one of activities of daily living (편향하중 조건 보행시 인체의 적응 작용에 대한 분석)

  • Kim, Hyun-Dong;Son, Jong-Sang;Kim, Han-Sung;Kim, Young-Ho;Lim, Do-Hyung
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1709-1712
    • /
    • 2008
  • The trunk is inclined to the loaded side when carrying an object as one of activities of daily living. As the reaction to this behavior the human body may be inclined to his/her trunk to unloaded side. The present study investigated the biomechanical effects of weight variation for sided load carriage during walking upon joint moments and muscle torques, through the tracker agent and joint driving dynamic analysis. To perform the experiment one male was selected as subject for the study. Gait analysis was performed by using a 3D motion analysis system. Thirty nine 14mm reflective markers, according to the plug-in marker set, were attached to the subject. We used BRG.LifeMOD(Biomechanics Research Group, Inc., USA), for skeletal modeling and inverse and joint driving dynamic simulation during one gait cycle. In walking with a sided load carriage, the subject modeled held the carriage with the right hand, which weighed 0, 5, 10, 15kg, 20kg respectively. The result of this simulation showed that knee and hip in the coronal plane were inclined to the loaded side and loaded side had larger moments as the sided load carriage was increased. On the other hand thoracic and lumbar in the coronal plane had larger negative values as the sided loaded carriage was increased. The thoracic and lumbar in the transverse plane also had larger values as the sided load was increased. And the several muscles of loaded side were increased as increasing sided load. It could be concluded that human body is adopted to side loaded circumstances by showing more biologic force. These results could be very useful in analysis for delivery motion of daily life.

  • PDF

Serviceability Performance Evaluation of Vertical Vibration of Waflle Shape and Duble-Tee Precast Concrete Slabs (와플형과 더블티형 프리캐스트 콘크리트 바닥판의 수직진동 사용성 평가)

  • Shin, Jae-Sang;Chung, Lan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.4
    • /
    • pp.62-69
    • /
    • 2010
  • In this study, the serviceability performance of Waffle Shaped(WAS) and Double-Tee(DT) precast concrete slabs were evaluated and compared based on the vertical acceleration magnitude induced by walking and heel drop loads. Tests were conducted for practical building structures of which floor systems used WAS and DT slabs. Natural frequencies of the slabs were similar to those obtained by using analytical models. The measured acceleration level was evaluated by vertical floor acceleration criteria presented by ISO-2631, AIJ(1991, Japan) and a previous study regarding floor vibration limit. Test results showed that both WAS and DT slabs satisfied all the criteria and Peak acceleration level of WA slabs was lower than that of DT slabs.