• Title/Summary/Keyword: 보텍스 진동

Search Result 11, Processing Time 0.02 seconds

Movement of a Horizontal Vortex Ring in a Circular Cylinder (원통 내 수평 보텍스 링의 거동)

  • Suh, Yong-Kweon;Yeo, Chang-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.6
    • /
    • pp.652-658
    • /
    • 2004
  • In this paper, we report the numerical and experimental solutions of the axi-symmetric flows in the axial plane driven by an impingement of fluid from the bottom wall of a circular cylinder. We managed to visualize successfully the flow pattern shown on the vertical plane through the container axis. The numerical results are shown to compare well with the experimental results for the case of infinity Rossby number. The satisfactory agreement between the two results was possible when in the numerics the free surface was treated as a solid wall so that a no-slip condition was applied on the surface. The numerical solutions reveal that inertial oscillation plays an important role at small Rossby numbers, or at a larger background rotation.

A Dynamic Characteristics of Horizontal Vortex;Experiment and Numerical Analysis on Rotating Effect (수평 보텍스 링의 동적 특성;회전효과에 대한 실험 및 수치해석)

  • Yeo, Chang-Ho;Park, Jae-Hyun;Suh, Yong-Kweon
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1466-1471
    • /
    • 2004
  • In this paper, we report the numerical and experimental solutions of the axi-symmetric flows in the axial plane driven by an impingement of fluid from the bottom wall of a circular cylinder. We managed to visualize successfully the flow pattern shown on the vertical plane through the container axis. The numerical results are not show to compare well with the experimental results for the case of the Rossby number 3. Because the numerical results calculate on the assumption that vortex flows are axi-symmetric flow on the other hand real experimental results are show asymmetric flow. The numerical solutions reveal that inertial oscillation plays an important role at small Rossby numbers, or at a larger background rotation.

  • PDF

Movement of a Horizontal Vortex Ring in a Circular Cylinder (원통 내 수평 보텍스 링의 거동)

  • Yeo, Chang-Ho;Suh, Yong-Kwon
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.640-645
    • /
    • 2003
  • In this paper, we report the numerical and experimental solutions of the vortical flows driven by an impingement of fluid from the bottom wall of a circular cylinder. We managed to visualize successfully the flow pattern shown on the vertical plane through the container axis. The numerical results are shown to compare well with the experimental results for the case of infinity Rossby number. The satisfactory agreement between the two results was possible when in the numerics the free surface was treated as a solid wall so that a no-slip condition was applied on the surface. The numerical solutions reveal that inertial oscillation plays an important role at small Rossby numbers, or at a large background rotation.

  • PDF

Flow Characteristics around a Circular Cylinder with a Spiral Strake of Fixed Offshore Platform (고정식 해양구조물의 원형지지각 주위 와유기진동에 관한 연구)

  • Gim, Ok-Sok;Lee, Gyoung-Woo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2012.06a
    • /
    • pp.289-290
    • /
    • 2012
  • 본 연구에서는 고정식 해양구조물의 지지각으로 사용되는 원형실린더에 나선형 판을 부착하여 와류유기진동에 미치는 영향을 고찰하였다. 연구의 목적을 달성하기 위해 $Re=6.5{\times}10^3$의 균일유입유동에서 2-프레임 그레이레벨 상호상관 PIV기법을 이용한 실험적인 방법을 적용하였다. 모델의 직경은 40mm이며 후류 유동구조, 난류강도, 응력분포에 대한 통계적 유동정보를 계측하였다. 실험결과로는 원형실린더와 뱃전판을 부착한 실린더와의 비교를 통해 뱃전판의 유동특정을 평가하였으며, 뱃전판의 영향은 후류에서 와의 생성과 소멸 메커니즘의 변화에 큰 영향을 미치고 후류 칼만 와열의 안정적인 제어를 통해 와류유기진동을 억제하였다.

  • PDF

Motion of a Horizontal Vortex Under a Background Rotation (배경회전 하의 수평 보텍스의 거동)

  • Suh Yong Kweon;Yeo Chang-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.10 s.241
    • /
    • pp.1101-1110
    • /
    • 2005
  • In this paper we present the numerical results of the behavior of the horizontal vortex generated by ejecting a liquid vertically upward from an orifice into the bulk fluid above the orifice. The numerical calculation has been performed for the axi-symmetric Navier-Stokes equation. A simple flow-visualization experiment was also conducted to qualitatively verify the numerical solutions. Three cases of the flow configurations studied in this paper are; firstly, the vortex was generated without any background rotation, secondly, the vortex was made under a full background rotation, and thirdly, the vortex was made during the spin-up process such that only the region adjacent to the side wall was set into motion viewed in the inertial frame of reference. It was shown that the swirl flow at the inlet boundary affects considerably the formation and development of the vortex for the second case. In the third case, it was remarkable to see that the vortex cannot penetrate into the region near to the side wall of the tank, because of the strong swirl flow and corresponding high pressure gradient in the region.

Cavity as a New Passive Device for Reduction of Skin Friction and Heat Transfer (새로운 수동제어소자인 공동을 이용한 마찰력과 열전달 감소에 관한 연구)

  • Hahn Seonghyeon;Choi Haecheon
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.463-466
    • /
    • 2002
  • In order to examine the possibility of using a cavity as a passive device for reduction of skin friction and heat transfer, an intensive parametric study over a broad range of the cavity depth and length at different Reynolds numbers is performed for both laminar and turbulent boundary layers in the present study. Direct and large eddy simulation techniques are used for turbulent boundary layers at low and moderate Reynolds numbers, respectively. for both laminar and turbulent boundary layers over a cavity, a flow oscillation occurs due to the shear layer instability when the cavity depth and length are sufficiently large and it plays an important role in the determination of drag and heat-transfer increase or decrease. For a cavity sufficiently small to suppress the flow oscillation, both the total drag and heat transfer are reduced. Therefore, the applicability of a cavity as a passive device for reduction of drag and heat transfer is fully confirmed in the present study. Scaling based on the wall shear rate of the incoming boundary layer is also proposed and it is found to be valid in steady flow over a cavity.

  • PDF

Design and fundamental test on the cargo pump sump scaled model of tankers (탱크선 카고 펌프장 축소모델 설계 및 기초 실험)

  • Lee, Jo-Yeon;Kim, Seung-Jun;Chen, Zhenmu;Singh, Patrick Mark;Choi, Young-Do
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.1
    • /
    • pp.31-35
    • /
    • 2017
  • The internal flow of a pump system that is installed in the interior of large vessels such as tankers is largely affected by the water level and flow conditions of the pump sump. However, the performance of the pump is generally evaluated with the consideration of only the performance of the pump itself, without considering the pumping station operating environment. Therefore, if the pump is affected by the incoming flow that exhibits vortex and swirl, the occurrence of vortex and swirl accompanied with air may cause problems with the pump sump. This effect of flow condition can lead to a decrease in efficiency, increase in vibration, and noise generation in the pump. In this study, to investigate the internal flow of the pump sump according to several water levels, a pump sump scale-model was designed and constructed. The frequency of vortex occurrence and the shape of the vortex were investigated according to the different water levels of a fundamental test. The Class C vortex type, which has a larger volume of air intake to the pump, was confirmed by the higher occurrence frequency at a relatively lower water level.

Numerical Study of Flow Around an Oscillating Sphere (진동하는 구 주위의 유동에 관한 수치적 연구)

  • Lee, Jin-Woog;Lee, Dae-Sung;Ha, Man-Yeong;Yoon, Hyun-Sik
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.11
    • /
    • pp.767-772
    • /
    • 2010
  • The incompressible viscous flow past a sphere under forced oscillation is numerically investigated at a Reynolds number of 300. The immersed boundary method is used to handle the sphere oscillating vertically to the streamwise direction. There are two important variables to characterize the oscillating state of a sphere. One is an oscillating amplitude normalized by the sphere diameter is set as a fixed number of 0.2. Another is the frequency ratio which is defined by $f_e/f_o$, where fe and fo are the excited frequency and the natural frequency of vortex shedding for the stationary sphere. In this study, three different frequency ratios of 0.8, 1.0 and 1.2 are considered. The results show a periodic flow with hairpin vortices shedding from upper and lower positions as well as vortical legs obliquely extended by oscillating motion of sphere. The enveloping vortical structure experience rupture twice in one period of oscillation. As the frequency of oscillation is increased, the vortical legs are getting shorter and eventually the hairpin vortices are much closer to the adjacent one.

Numerical Simulation of the Vortical flow around an Oscillating Circular Cylinder (진동하는 원형주상체 주위의 와류 수치 모사)

  • 김광수;이승재;서정천
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.2
    • /
    • pp.21-27
    • /
    • 2003
  • The phenomena of vortex shedding around a cylinder oscillating harmonically in a fluid at rest are investigated by a two-dimensional numerical simulation of the Navier-Stokes equations. The simulation is based on a vorticity-velocity integro-differential formulation dealing with vorticity, velocity and pressure variables. Three combinations of Reynolds number(Re) and Keulegan-Carpenter number(KC) were taken to investigate the associated vortex development around the cylinder in the different flow regimes. Drag and lift forces are computed to describe their dominant frequency modulation which is related to the vortex shedding and to the harmonic motion of the cylinder.

Study on Flow Around Circular Cylinder Advancing Beneath Free Surface (자유표면 밑을 전진하는 원주 주위의 유동에 관한 연구)

  • Yi, Hyuck-Joon;Shin, Hyun-Kyung;Yoon, Bum-Sang
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.5
    • /
    • pp.16-21
    • /
    • 2013
  • The flow around a circular cylinder advancing beneath the free surface is numerically investigated using a VOF method. The simulations cover Froude numbers in the range of 0.2~0.6 and gap ratios (h/d) in the range of 0.1~2.0, where h is the distance from the free surface to a cylinder, and d is the diameter of a cylinder at Reynolds number 180. It is observed that the vortex suppression effect and surface deformation increase as the gap ratio decreases or the Froude number increases. The most important results of the present study are as follows. The proximity of the free surface causes an initial increase in the Strouhal number and drag coefficient, and the maximum Strouhal number and drag coefficient occur in the range of 0.5~0.7. However, this trend reverses as the gap ratio becomes small, and the lift coefficient increases downward as the gap ratio decreases.