• Title/Summary/Keyword: 보정형상

Search Result 309, Processing Time 0.027 seconds

The Inverse Design Technique of Propeller Blade Sections Using the Modified Garabedian-McFadden Method (Modified Garabedian-McFadden 방법을 이용한 프로펠러 날개 단면의 역설계 기법)

  • C.M. Jung;J.K. Cho;W.G. Park
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.4
    • /
    • pp.28-36
    • /
    • 1999
  • An efficient inverse design method based on the MGM(Modified Garabedian-McFadden) method has been developed. The 2-D Navier-Stokes equations are solved for obtaining the surface pressure distributions and coupled with the MGM method to perform the inverse design. The MGM method is a residual-correction technique, in which the residuals are the difference between the desired and the computed pressure distribution. The developed code was applied to several airfoil shapes and the propeller. It has been found that they are well converged to their targeting shapes.

  • PDF

Aerodynamic Corrections for Load Analysis of Micro Aerial Vehicle (초소형 비행체 하중해석을 위한 공력보정)

  • Koo, Kyo-Nam
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.6
    • /
    • pp.31-38
    • /
    • 2005
  • Aerodynamic influence coefficient linearly relates pressure with downwash in panel method for load analysis in which the viscosity of a flow is ignored and the compressibility cannot be taken into account in transonic region. Since the planform of an aerodynamic surface determines the coefficient, the panel method has a limit to the analysis of low Reynolds number flow. The accuracy of the pressure distribution can be improved by a direct correction to the pressure or a correction to the downwash, which is considered the change of camber or thickness, using the aerodynamic coefficients from wind tunnel test as constraints. A premultiplying correction method as well as a postmultiplying correction method is applied to a micro air vehicle to provide more accurate aerodynamic pressure for trim and load analyses. Theoretical aerodynamic pressure is obtained from the panel method. Correction factor matrix and correct pressure coefficient are computed for the conditions with two constraints in addition to single constraint. The postmultiplying correction method gives a better improvement in pressure distribution on micro air vehicle due to the flow characteristics on it.

Dispersion-Correction Finite Element Model for Simulation of Tsunami Propagation over Slowly Varying Depth (완변수심상 지진해일 전파 모의를 위한 분산보정 유한요소모형)

  • Lim, Chae-Ho;Jeon, Young-Joon;Bae, Jae-Seok;Yoon, Sung-Bum
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.576-580
    • /
    • 2007
  • 수치기법이 복잡한 Boussinesq 방정식 대신 간단한 선형 Boussinesq 형태의 파동방정식을 지배방정식으로 사용하면서도 완변수심상 지진해일 전파시 요구되는 물리적 분산효과를 정도 높게 고려할 수 있는 분산보정 지진해일 전파 유한요소모형을 개발하였다. 수심이 변하는 지형에서의 분산보정능력을 검증하기 위해 수중 원형천퇴상을 전파하는 Gaussian 형상의 가상지진에 대해 수치모의를 수행하고, 그 결과를 선형 Boussinesq 방정식에 의해 계산된 수치해와 비교하였다. 그 결과 개발된 유한요소모형이 수심이 변하는 지형에서도 상당히 정확하다는 것이 입증되었다.

  • PDF

A Study on the Improvement of the Shape Accuracy of Plastic Lens by Compensation Program (보정 프로그램을 이용한 Plastic 렌즈 Core의 보정에 관한 연구)

  • Woo, Sun-Hee;Lee, Dong-Joo
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.4
    • /
    • pp.112-118
    • /
    • 2008
  • In order to meet the optical performance in the process of the micro lens manufacturing with plastics, it is important to embody accuracy in shape and surface roughness to the intended design. Since it is difficult to machine exactly the mold core of lens fit to the designed shape, in this paper, a simple program using MATLAB is developed for shape correction of the mold core after first machining it. This program evaluates correction parameters(aspheric coefficients and curvature) and generates aspheric NC data for compensating the core surface in prior machining process. The program provides the way to manufacture plastic injection molding lens with aspheric shape of high precision, and is expected to be effective for correction and to shorten the processing time.

A Image-based 3-D Shape Reconstruction using Pyramidal Volume Intersection (피라미드 볼륨 교차기법을 이용한 영상기반의 3차원 형상 복원)

  • Lee Sang-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.1
    • /
    • pp.127-135
    • /
    • 2006
  • The image-based 3D modeling is the technique of generating a 3D graphic model from images acquired using cameras. It is being researched as an alternative technique for the expensive 3D scanner. In this paper, I propose the image-based 3D modeling system using calibrated camera. The proposed algorithm for rendering 3D model is consisted of three steps, camera calibration, 3D shape reconstruction and 3D surface generation step. In the camera calibration step, I estimate the camera matrix for the image aquisition camera. In the 3D shape reconstruction step, I calculate 3D volume data from silhouette using pyramidal volume intersection. In the 3D surface generation step, the reconstructed volume data is converted to 3D mesh surface. As shown the result, I generated relatively accurate 3D model.

Proposal of Empirical Formula for Bedform Size on West Coast of Korea (서해안의 해저표면형상 예측 경험식 제안)

  • Kim, Hyoseob;Yoo, Hojun;Jang, Changhwan
    • Journal of Wetlands Research
    • /
    • v.14 no.4
    • /
    • pp.457-469
    • /
    • 2012
  • Bedform data at 4 shallow zones in the Yellow Sea where waves as well as tidal range are high and bed material is relatively coarse were collected and analyzed here. Water depths in the study area where the bedform data were collected are 10 ~ 65 meters, and ripple lengths well developed are between 6 ~ 13 meters. Existing empirical formula for prediction of ripple length as for coexistence of waves and currents include Khelifa and Ouellet(2000) and Soulsby(2005), both of which have been based on laboratory measurements, or field measurements at different physical environment from the Yellow Sea with respect to tidal range, wave strength, and bed material. New scaling factors are proposed here for better prediction of the ripple length on coastal zone in the Yellow Sea.

Error compensation in the optical 3D phase measuring profilometry (광위상 3차원 형상 측정법에서의 오차보정)

  • 황용선;강영준;백성훈;박승규;임창환
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.07a
    • /
    • pp.154-155
    • /
    • 2003
  • PMP(Phase Measuring Profilometry)측정법은 투영계와 기록계의 기하학적 구성과 광학계의 정렬적인 문제에 의해서 기본적으로 오차를 가지고 측정된다. 일반적으로 PMP 형상 측정에서 측정면과 광학계의 높이가 피 측정면에 비해서 상당히 큰 경우, CCD 카메라에서 높이 방향으로 측정영역이 작아지게됨으로써 측정위상이 기준면에서의 위치와 높이 방향에 따라서 다르게 나타나고 프로젝터가 측정면에 투영되는 간섭무의의 피치가 다르게 적용된다. (중략)

  • PDF

Aided Navigation Algorithm for Land Navigation System Using VMS with Indirect Drive Condition (직진성이 보장되지 않는 조건에서 지상항법시스템의 속도계를 이용한 보정항법 알고리즘)

  • Kim, Hyungsoo
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.4
    • /
    • pp.314-320
    • /
    • 2016
  • Inertial navigation system (INS) has used aided systems and sensors to compensate navigation error. Global navigation satellite system (GNSS), velocity measurement sensor (VMS), and radar are commonly used to aid INS. Land navigation system (LNS) also mainly uses VMS when GNSS cannot be used such as at tunnel or on jammed scenario. A straight drive is required when VMS-aided navigation is used, because there is only speed of straight direction whereas no crossways and vertical directions. In local environment, even an expressway has lack of straight drive which is constraint of VMS-aided navigation algorithm. This paper proposes an enhanced VMS-aided navigation algorithm for LNS with indirect drive by restricting filter update condition. Also, there is a result of vehicle test to prove performance of the proposed algorithm.