• Title/Summary/Keyword: 보일러 튜브

Search Result 91, Processing Time 0.025 seconds

Effect on Thermal Performance of Superheater Module under Part Load Operation in HRSG (배열회수보일러의 부분부하 운전에 따른 유동불균일이 과열기의 성능에 미치는 영향)

  • Chong, Chae-Hon;Song, Jung-Il
    • Journal of Energy Engineering
    • /
    • v.17 no.3
    • /
    • pp.161-166
    • /
    • 2008
  • The purpose of this study is to apprehend the behavior of exhaust gas flow from gas turbine during part load operation in Heat Recovery Steam Generator. As a first step of this work, internal flow characteristics according to HRSG types were examined by CFD analysis. Next step, tube temperature according to gas turbine 53% and 100% load conditions were calculated by results of CFD and those were compared with temperature data gathered from real plant. Finally, thermal performance due to part load operation was calculated to estimate the influence of heat transfer in superheater. In addition, new type of device is suggested to eliminate the uneven temperature distribution of tubes during part load operation.

The effect of coking property on combustion reactivity of weak caking coals and ash-free coal (점결특성이 무회분탄과 약점결탄의 연소반응성에 미치는 영향)

  • Lee, Soonho;Eom, Soohyun;Kim, Gyubo;Jeon, Chunghwan
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.47-49
    • /
    • 2014
  • 발전소에서 설계 규격을 벗어나는 저등급 석탄을 사용하기 시작하면서, 보일러에서의 연소특성을 예측하기 어려운 다양한 성질의 석탄이 들어오게 되어 각종 연소 문제가 증가하고 있다. 이 중 약 점결 특성을 가지는 저등급 석탄의 사용은 대형 클링커로 인한 보일러 하부의 튜브 손상 사고, 재열증기온도 상승으로 인한 출력감발 등의 문제를 발생시켰다. 또한 현재 개발 중인 무회분석탄 역시 점결 특성을 가지고 있는 것으로 알려져 있어 보일러 내부의 다양한 문제를 일으킬 것으로 예상되고 있다. 발전소에서는 강점결탄 수입 규제를 위해 CSN(Crucible Swelling Number)를 이용하여 제철용으로 사용되는 강점결 석탄의 도입을 규제해왔으나, 발전소 운영에 악 영향을 미치는 약 점결탄에 대한 규제 및 대응으로는 그 효과가 미미한 실정이다. 따라서 본 연구에서는 석탄의 점결 특성 중 팽창 특성을 분석할 수 있는 Microdilatometer와 TGA를 이용한 연소반응성 분석을 통해 석탄의 점결 특성이 연소반응성에 미치는 영향을 분석하였다.

  • PDF

Precise Diagnosis Technology for Power Plant Boiler (발전용 보일러 정밀진단기술)

  • Park, Min-Su;Kim, Jong-Oh
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.914-919
    • /
    • 2000
  • In most case high temperature components in fossil power plant are damaged by fatigue, creep and degradation. Design of power plant components is based on ideal loading such as temperature, pressure and so on. But in many cases unexpected loadings are applied at components. A key ingredient in plant life extension is the preventive diagnosis technology and remaining-life-assessment technology. This paper describes diagnosis technology and life-assessment technology for power plant boiler. It helps in setting up proper inspection schedules, maintenance procedures, and operating procedure.

  • PDF

Auto-Bending Manufacturing System for Boiler Tubes (보일러 튜브 자동벤딩 생산시스템 개발)

  • Lee, Hyun-Soo;Kang, Moon-Hyun;Park, Jun-Kon;Hur, Kwan;Sung, Joon-Suk;Heo, Wang-Soon
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.450-454
    • /
    • 1997
  • This system is the automatic boiler tube bending equipment which has four heads for bending the tube and the carriage for moving the tube. The system consists of two frames for transporting each moving parts, high-frequency heating equipment for heating the tube in hot bending, control panel for inputting the job data operating, remote control unit for concetration and distribution of input/output, and the monitoring system which can establish unmanned operationby receiving the bending job data via LAN form a design teamwhich produces the job data and schedule based on master production plan and diagnoses bending data change, input, whole system status, and system malfunctions. By employing this system, 30% of production improvement was achieved was achieved comparing to the existing bending system.

  • PDF

Prediction of Thermal Load Distribution and Temperature of the Superheater in a Tangentially Fired Boiler (접선 연소식 보일러의 최종 과열기 열부하 분포 및 튜브 온도 예측에 관한 연구)

  • Park, Ho-Young;Sea, Sang-Il
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.7
    • /
    • pp.478-485
    • /
    • 2008
  • The extreme steam temperature deviation experienced in the superheater of a tangentially fired boiler can seriously affect its economic and safe operation. This temperature deviation is one of the main causes of boiler tube failures. The steam temperature deviation is mainly due to the thermal load deviation in the lateral direction of the superheater. The thermal load deviation consists of several causes. One of the causes is the non-uniform heat flow distribution of burnt gas on the superheater tube system. This distribution is very difficult to measure in situ using direct experimental techniques. So, we need thermal load model to estimate the tube temperature. In this paper, we propose a thermal load distribution model by using CFD analysis and plant data. We successfully predict the tube temperature and the steam flow rate in a final superheater system from the thermal load model and one dimensional heat-flow system analysis. The proposed model and analysis method would be valuable in preventing the frequent tube failure of the final superheater tubes.

Fault Detection Method for Steam Boiler Tube Using Mahalanobis Distance (마할라노비스 거리를 이용한 증기보일러 튜브의 고장탐지방법)

  • Yu, Jungwon;Jang, Jaeyel;Yoo, Jaeyeong;Kim, Sungshin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.3
    • /
    • pp.246-252
    • /
    • 2016
  • Since thermal power plant (TPP) equipment is operated under very high pressure and temperature, failures of the equipment give rise to severe losses of life and property. To prevent the losses, fault detection method is, therefore, absolutely necessary to identify abnormal operating conditions of the equipment in advance. In this paper, we present Mahalanobis distance (MD) based fault detection method for steam boiler tube in TPP. In the MD-based method, it is supposed that abnormal data samples are far away from normal samples. Using multivariate samples collected from normal target system, mean vector and covariance matrix are calculated and threshold value of MD is decided. In a test phase, after calculating the MDs between the mean vector and test samples, alarm signals occur if the MDs exceed the predefined threshold. To demonstrate the performance, a failure case due to boiler tube leakage in 200MW TPP is employed. The experimental results show that the presented method can perform early detection of boiler tube leakage successfully.