• Title/Summary/Keyword: 보수성능

Search Result 1,023, Processing Time 0.025 seconds

Development and Performance of Self-Propelled Vehicles for Repairing Concrete Sewage Pipes (콘크리트 하수관로 결함부 보수를 위한 자주차 개발 및 성능평가)

  • Park, Ji-Hun;Jung, Hoe-Won;Park, Hee-Woong;Yang, In-Hwan
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.3
    • /
    • pp.372-378
    • /
    • 2020
  • In this study, an experiment was conducted on the development and performance of self-propelled vehicles to repair defects in concrete sewage pipes. The self-propelled vehicle for a non-excavation repair for the sewage pipe defects was developed in consideration of the performance of the driving system, the feasibility of the repair unit, and the transportation of repair materials. In order to evaluate the performance of the developed self-propelled vehicle, a repair test was performed by simulating a defect at a connection between the main pipe and extruded one. The main sewage pipe was meade of concrete and its diameter was 500mm. Thereafter, watertightness performance was evaluated on the leakage at the repaired part. For watertightness performance, both ends of concrete sewage pipe and connected one was inserted by plugs, and then water was injected. The amount of leakage water measurement was 0.07L/㎡, indicating a value less than 0.2L/㎡ of the allowable leakage amount. Therefore, test results indicated that the self-propelled vehicle developed in this study exhibited excellent maintenance performance for repairing the sewage pipes.

Performance Evaluation of Various Concrete Repair Materials to Corrosion Prevent of Rebar (철근의 부식 방지를 위한 다양한 콘크리트 보수재료들의 성능평가)

  • Tae-Kyun Kim;Jong-Sub Park
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.458-466
    • /
    • 2023
  • Structures in our surroundings deteriorate over time due to environmental and chemical factors, resulting in a decrease in their performance. The primary causes of degradation in concrete structures are carbonation, salt damage, and freeze-thaw cycles. Various maintenance methods exist to address these degradation issues. However, research and technological development for existing maintenance methods have been ongoing, but the accuracy and effectiveness of repair materials and techniques have not been extensively validated. Therefore, in this study, we conducted a material performance evaluation of various manufacturers' repair materials. Based on this evaluation, we applied corrosion inhibitors and epoxy, which are the methods most closely related to crack repair, to assess the durability performance against carbonation, salt damage, and freeze-thaw cycles. The results show approximately a two-fold performance improvement against carbonation and salt damage, and a 5% enhancement in repair performance against freeze-thaw cycles. Thus, it is considered effective in preventing rebar corrosion when appropriate maintenance is carried out according to environmental and chemical factors during structural repairs.

Evaluation of Flexural Bond Performance of Hybrid Concrete Repair Materials (하이브리드 콘크리트 보수재료의 휨부착 성능평가)

  • Kim, Gyeong Tae;Kim, Sang Jun;Park, Hong Gi;Choi, Young Cheol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.6
    • /
    • pp.176-181
    • /
    • 2018
  • Concrete structures are degraded physically and chemically due to various reasons after construction. Because the deterioration of concrete structure reduces the service life, reasonable repair and maintenance techniques are needed. Recently, in order to efficiently repair concrete structures, many researches on hybrid repair materials having improved adhesion performance have been carried out actively. In this study, we developed a hybrid repair material containing rapid hardening cement, PVA powder, nylon fiber, and latex to improve adhesion and water-tightness of existing concrete. The compressive strength, drying shrinkage and the adhesion strength test were carried out to evaluate the performance of the repair material. In addition, the flexure bond performance was evaluated before and after repair. From the results, the bending strength was 110% ~ 150% in all specimens except for the specimen containing only the rapid hardening cement, and all the specimens behaved with the existing concrete in the crack pattern generated by the bending strength.

Evaluation of Bonding Performance in UHPC-based Concrete Repair Materials Considering Surface of Structure Subject to Repair (보수대상 구조 표면 상태를 고려한 UHPC 기반 콘크리트 보수재료의 부착 성능 평가)

  • Yong-Sik Yoon;Kyong-Chul Kim;Kwang-Mo Lim;Gi-Hong An;Gum-Sung Ryu;Kyung-Taek Koh
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.433-439
    • /
    • 2023
  • In this study, the bonding performance of repair materials was evaluated on concrete repair surface to develop concrete repair materials based on UHPC (Ultra High Performance Concrete) which has high mechanical and durability performance. The ten test variables were applied considering the roughness and wet condition of the concrete surface subject to repair, the addition of polymer, and the use PP and PVA fibers in repair materials. The addition of the polymer caused a significant decrease in strength, which was thought to be due to the effect of the additional super plasticizer used to adjust workability. Also, flow was reduced by up to 13.8 % with the use of plastic-based fibers. As a result of evaluating the bond strength of the repair material considering the condition of the surface subject to repair, it was thought that in the case of using UHPC-based repair material, high bonding performance could be secured without any additional surface treatment as long as the surface of the base material was sound. In addition, UHPC-based repair materials showed high bonding performance even when the attachment surface was wet. In the future, research will be conducted on shot-crete application and gradient pouring for the development of UHPC-based repair materials, and continuous improvement in the repair material mixing property will be carried out to ensure economic efficiency and performance as a concrete structural repair material.

Optimum Maintenance and Retrofit Planning for Reliable Seismic Performance of the Bridges (내진성능확보를 위한 교량의 최적유지보수계획법)

  • 고현무;이선영;박관순;김동석
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.5
    • /
    • pp.29-36
    • /
    • 2002
  • In the maintenance and retrofit planning of a bridge system, the optimal strategy for inspection and repair are suggested by minimizing the expected total life-cycle cost, which includes the initial cost, the costs of inspection, repair, and failure. Degradation of seismic performance is modeled by using a damage function. And failure probability is computed according to the degree of damage detection by random vibration theory and the event tree analysis. As an example to illustrate the proposed approach, a 10-span continuous bridge structure is used. The numerical results show that the optimum number of the inspection and the repair are increased, as the seismic intensity is increased and the soil condition of a site becomes more flexible.

Evaluation on the Performance of Nano Mixed Inorganic Repair Material for Crack Repair of Concrete Structures (콘크리트 구조물의 균열 보수를 위한 나노 합성 무기계 보수 재료의 성능 평가)

  • Kim, Jong-Pil;Jeon, Chan-Ki;Chung, Hoon;Kim, Hong-Seug
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.3
    • /
    • pp.33-39
    • /
    • 2007
  • This paper presents a detailed experimental study on the engineering and durability properties of nano mixed inorganic repair material with rehabilitation and enhancement of performance of concrete structure occur to crack. The performance of specimens was evaluated using bond strength, chloride ion ingress, carbonation and brine resistance. It was shown in the results of the experiments that it had a superior function in the bond strength under the standard and wet-dry condition of all the repair material. Moreover, it had a good function in the experiments for chloride ion ingress, carbonation and brine resistance. Judging from the above-mentioned results, it is expected to be used for the rehabilitation and enhancement of the performance of concrete structure.

Software Maintenance Cost Estimation using RBF Network (RBF망을 이용한 소프트웨어 유지보수 비용 추정)

  • 박주석;정기원
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.5
    • /
    • pp.555-562
    • /
    • 2004
  • Software industry has put more emphasis on maintenance and enhancement work than on the new development. The existing effort estimation models can still be applied to maintenance projects, though modifications are needed. This paper suggests a way to estimate the size of a maintenance project from the regression analysis of ISBSG's benchmarking data. First of all, among the 3 elements(addition, modification and deletion of the program) which influences the software cost, we selected and classified 4 groups from a total of 8 which shows actual maintenance cost from ISBSG's data. Moreover, we developed statistical model and a model which uses RBF(Radial Basis Function) Network and after evaluating each functions we concluded that the RBF Network is superior to the statistical model.

A Study on the Performance Evaluation of Repair Material and Method for Reinforced Concrete Structure by tong Term Exposure Experiment (장기폭로실험에 의한 철근콘크리트 구조물 보수재료 · 공법의 성능평가에 관한 연구)

  • Kim Moo-Han;Kim Yong-Ro;Kim Jae-Hwan;Ho Jang-Jong;Cho Bong-Suk
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.5 s.83
    • /
    • pp.659-666
    • /
    • 2004
  • In this study, for the establishment of the performance evaluation methods and the quality control standard of durability recovery method, the quantitative exposure data by long term exposure test under the coast and air environment is accumulated and analyzed. Investigating and evaluating the result of exposure test during 18 months of exposure age under the coastal and normal atmosphere environment, micro crack, swelling and spatting of surface coating material crack of repair standards of repair material and method through continuous exposure test in the future.

An Experimental Study on the Flexural Behavior of One-Way Concrete Slabs Using the Restorative Mortar and Crimped Wire Mesh (크림프 철망 및 단면복구 보수 모르타르를 사용한 일방향 슬래브의 휨 거동에 관한 실험적 연구)

  • Lee, Mun-Hwan;Song, Tae-Hyeob
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.5
    • /
    • pp.569-575
    • /
    • 2007
  • The repair of concrete surfaces does not normally take into account structural tolerance for longer service lift and better capabilities of concrete structures. In particular, the repair of surface spelling completes as mortar is applied, which does not display additional structural performances. The use of crimped wire mesh for better construction and fracture resistance, however, expects to have some reinforcement effects. Particularly, it is also expected that the repair of bottom part in structures built between bridges like irrigation structures results in the increase of flexural resistance. Therefore, this study is intended to perform the repair using crimp wire mesh and examine strength depending on the repair section and depth. For this, a slab with 150 mm in depth, 3,000 mm in length and 600 mm in width and total 8 objects to experiment such as upper part, upper whole, bottom part, bottom whole and crimp wire mesh reinforced are manufactured to perform flexural performance. The results of the analysis show that yield strength and failure load increase as the depth of repair materials in the experiment reinforced with crimp wire mesh get bigger. In the same condition, repair of bottom part is able to increase internal force of bending force. Besides, the results show that partial repair of structures under bending force cannot produce flexural performance. Consequently, the repair method with crimp wire mesh results in the increase of flexural resistance.

A Study on Durability Improvement for Concrete Structures Using Surface Impregnant (표면침투제를 이용한 콘크리트의 내구성 향상에 대한 연구)

  • Kwon, Seung-Jun;Park, Sang-Sun;Lee, Sang-Min;Kim, Jeong-Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.4
    • /
    • pp.79-88
    • /
    • 2007
  • Concrete structures undergo degradation of durability performance and it generally propagates to the structural problems. Recently. a lot of materials for surface protection for concrete are developed, however, performance is not clearly improved due to the difficulties such as repair construction technique and quality of materials for repairing. In this study, liquid inorganic impregnant for concrete structures is developed and durability performance for impregnated concrete specimens is carried out. Furthermore, the performances of the concrete specimens with developed impregnant is also compared with those of the specimens with impregnant conventionally used. Additional CSH gel is formed through the reaction of calcium hydroxide ($Ca(OH)_2$) and impregnant with silicate. As a result of the reaction, impregnated concrete is evaluated to have more denser surface and resistance to deterioration. Finally it is experimentally verified that the concrete specimens with developed impregnant show better durability performance than normal specimens and those with conventional impregnant.