• 제목/요약/키워드: 보상전압

Search Result 900, Processing Time 0.037 seconds

Development of the CO2 Inverter Welding Controller for Compensation of Voltage Loss (전압손실 보상용 CO2 인버터 용접기 콘트롤라 개발)

  • Bae, Jong-Il
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.4 no.4
    • /
    • pp.54-60
    • /
    • 2005
  • In a $CO_2$ inverter welding machine, stable arcs can be generated and a welding performance that is a goal of welding can be improved when stable electric power with a low voltage and a high current is supplied to a electrode that is the secondary part (output load terminal) and the base metal. For such a stable power supply, therefore, the AC arc welding machine, the thyristor welder, and the inverter welder have been developed in order according to development of the power electronics techniques. Up to now, the thyristor welding machine is still broadly used but the application volume is gradually reduced by development of the inverter welder. Because the welding performance of the inverter welder is very good and the weight and size of the welder is remarkably light and small. The final goal of this research is to develop the voltage loss compensator that is a drawback of the inverter welder and improve the welding performance using the developed compensator.

  • PDF

A Study on the Compensation Method in the Measuring System for Chopped Lightning Impulse (충격전압 재단과 측정을 위한 보상회로에 관한 연구)

  • Kim, Ik-Soo;Kim, Young-Bae;Kim, Jin-Gi;Kim, Min-Kyu
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1895-1897
    • /
    • 1996
  • Lightning impulse voltage is essential to evaluate the insulation performance of electric power apparatus. Recently international standard (IEC-60) on high voltage measurement techniques are being revised. In the draft of this standard, a new calibration method is introduced and the accuracy of most industrial measuring systems is maintained by means of comparison test against the reference measuring systems. Comparison tests of dividers for chopped lightning impulse measurement were rallied out by KERI. The 700kV shielded resisitive divider with and without compensation element were done comparison test with 300kV PTB divider which have the similar charateristics as that were circulated among the laboratories. This paper reports on the calculation results of response charateristics obtained by EMTP and the comparison test results with chopped lightning impulse voltages from 150kV to 250kV. It is demonstrated that KERI are capable of realizing the idea in the revision of the IEC standand, that is, to establish traceability.

  • PDF

A Study on the control method of DYNAMIC UPS (다이나믹 무정전전원장치 제어 방법)

  • Kwak, C.H.;Park, K.S.;Chung, C.H.;Kwon, D.K.;Park, J.S.;Byun, D.S.
    • Proceedings of the KIEE Conference
    • /
    • 2004.11d
    • /
    • pp.10-13
    • /
    • 2004
  • 현재 고도의 정보화 사회에서는 계측기 및 정보통신기기의 발달로 정확한 신뢰성이 요구되고 있으나, 정전이나 순간적 전압강하와 같은 전력장애의 요인은 산업에 막대한 영향을 미치므로 경제적 손실 등의 치명적인 피해를 준다. 이 문제를 해결하는 방안으로 무정전전원장치(UPS : Uninterruptible Power Supply)의 필요성이 요구되는 현실입니다. 그러나 UPS을 사용함으로써 문제점도 야기되고 있는 주요 원인은 밧데리의 불량과 교체에 따른 환경적인 문제가 대두되고 있는 헌상입니다. 문제점을 해소하기 위한 방안으로 축전지없이 정전을 보상하는 방식을 채택시 축전지 설치장소 확보, 운영관리, 교체 등에 따른 경제적 손실을 크게 줄일 수 있으며, 또한 축전지 미사용으로 인한 환경공해 문제가 해결 할 수 있다. 이러한 문제점을 해결하고자 PS 장비의 효율성과 신뢰성 모두가 향상되고 또한 장비의 연간 유지보수 비용 절감 및 환경 공해로부터 문제를 해소 할 수 있는 다이나믹 무정전전원장치(Dynamic Uninterruptible Power Supply)의 필요성이 대두되고 있는 실정입니다.

  • PDF

DC offset Compensation Algorithm with Fast Response to the Grid Voltage in Single-phase Grid-connected Inverter (단상 계통 연계형 인버터의 빠른 동특성을 갖는 계통 전압 센싱 DC 오프셋 보상 알고리즘)

  • Han, Dong Yeob;Park, Jin-Hyuk;Lee, Kyo-Beum
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.7
    • /
    • pp.1005-1011
    • /
    • 2015
  • This paper proposes the DC offset compensation algorithm with fast response to the sensed grid voltage in the single-phase grid connected inverter. If the sensor of the grid voltage has problems, the DC offset of the grid voltage can be generated. This error must be resolved because the DC offset can generate the estimated grid frequency error of the phase-locked loop (PLL). In conventional algorithm to compensate the DC offset, the DC offset is estimated by integrating the synchronous reference frame d-axis voltage during one period of the grid voltage. The conventional algorithm has a drawback that is a slow dynamic response because monitoring the one period of the grid voltage is required. the proposed algorithm has fast dynamic response because the DC offset is consecutively estimated by transforming the d-axis voltage to synchronous reference frame without monitoring one cycle time of the grid voltage. The proposed algorithm is verified from PSIM simulation and the experiment.

Compensation Algorithm for a Measurement Voltage Transformer (측정용 전압 변성기 오차 보상 알고리즘)

  • Kang, Yong-Cheol;Park, Jang-Min;Lee, Mi-Sun;Jang, Sung-Il;Kim, Yong-Gyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.5
    • /
    • pp.761-766
    • /
    • 2008
  • This paper describes a compensation algorithm for a measurement voltage transformer (VT) based on the hysteresis characteristics of the core. The error of the VT is caused by the voltages across the primary and secondary windings. The latter depends on the secondary current whilst the former depends on the primary current, i.e. the sum of the exciting current and the secondary current. The proposed algorithm calculates the voltages across the primary and secondary windings and add them to the measured secondary voltage for compensation. To do this, the primary and secondary currents should be estimated. The secondary current is obtained directly from the secondary voltage and used to calculate the voltage across the secondary winding. For the primary current, in this paper, the exciting current is decomposed into the two currents, i.e. the core-loss current and the magnetizing current. The core-loss current is obtained by dividing the primary induced voltage by the core-loss resistance. The magnetizing current is obtained by inserting the flux into the flux-magnetizing current curve. The calculated voltages across the primary and secondary windings are added to the measured secondary current for compensation. The proposed compensation algorithm improves the error of the VT significantly.

Compensating algorithm for the secondary current of a measurement type CT considering the secondary voltage-core loss current curve and the flux linkage-magnetizing current curve (2차 전압-철손 전류 곡선과 자속-자화 전류 곡선을 고려한 측정용 변류기 2차 전류 보상 알고리즘)

  • Kang, Yong-Cheol;Zheng, Tai-Ying;Jang, Sung-Il;Kim, Yong-Gyun
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.65-66
    • /
    • 2008
  • This paper proposes a compensating algorithm for the secondary current of the measurement current transformer (CT) that removes the effects of the hysteresis characteristics of the iron-core. The exciting current resulting from the hysteresis characteristics of the core causes an error between the primary current and the secondary current of the CT. The proposed algorithm decomposes the exciting current into the magnetizing current and the core loss current and each of them is estimated. The core loss current is calculated from the secondary voltage and the secondary voltage-core loss current curve. The core flux linkage is calculated and then inserted into the flux-current curve to estimate the magnetizing current. The exciting current at every sampling interval is obtained by summing the core-loss and magnetizing currents and then added to the measured current to compensate the secondary current. The performance of the proposed algorithm is validated under various conditions using EMTP generated data. The test results of the real CT were also included. The results indicate that the proposed algorithm can improve the accuracy of the measurement CT significantly, and thus reduce the size and the cost of the CT.

  • PDF

Development of Uninterruptible Power Supply with Voltage Sag Restorer Function (순시전압강하 보상 기능을 가지는 무정전전원공급장치의 개발)

  • Park, Jong-Chan;Shon, Jin-Geun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.2
    • /
    • pp.95-101
    • /
    • 2014
  • In this paper, UPS, with a built-in instantaneous sag drop compensation features, was developed to improve performance. The improved UPS, using instantaneous moving average method, compensates by quickly measuring the voltage and series inverter of half-bridge type, using line-interactive method that links with the voltage of the battery and power source, was developed. In addition, by developing a parallel inverter that uses a high-efficiency PWM switching method, overall UPS system was enhanced. To verify the performance of the proposed algorithm, single-phase 5[kVA] UPS systems were designed and the experimental system was constructed. The low-cost type of Cortex-M3 module CPU STM32F103R8T6 (32[bit]) is attached and the switching time of mode transfer was set within 4 [ms]. THD of the linear load operates in less than 3[%], and the stability of the output voltage operates in approximately ${\pm}2[%]$ range. The superior performance of the operations was confirmed with the system set as above.

A Study on Modular Multi-level Converter Applied to AC Eletric Railroad Substation (교류 철도 급전변전소의 모듈형 멀티레벨 컨버터 적용 모델링 연구)

  • Hyun, Byungsoo;Shin, Seungkwon;Kim, Hyungchul;Jang, Gilsoo
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1605-1606
    • /
    • 2015
  • 전기철도차량은 매 순간마다 이동하는 대용량 단상부하로, 전력계통 측면에서 부하의 특성이나, 계통구성의 형태 및 제반현상이 일반 3상 전력계통과 상이한 특성을 지닌다. 이와 같이 3상 전력계통으로 부터 단상 교류로 변환하여 전기차를 운행하는 경우에는 3상 전원측 PCC(Point of Common Coupling)에 불평형을 일으켜, 역상전류를 발생시킨다. 현재는 이를 최소화하기 위해서 종래부터 사용 되어온 스코트 결선 변압기를 사용하고 있다. 하지만 특성상 두 개의 단상 시스템에 걸리는 부하량 및 역율이 동일하지 않을 경우 여전히 3상 전압불평형이 발생된다. 이에 대한 근본적인 대책으로는 급전시스템 재구성 또는 전력 설비 증설 및 보상장치의 적용을 들 수 있으나, 최근에는 전력전자 기술의 발달로 IGBT(Insulated Gate Bipolar Transistor) 소자를 이용한 BTB(Back To Back) 방식의 컨버터를 활용한 사례가 연구되고 있다. 본 논문에서는 전력계통과 전기철도의 연계 목적으로 3상-단상 BTB 모듈형 멀티레벨 컨버터 (Modular Multi-level Conveter, MMC)를 이용한 전기철도 급전 시스템의 기본구조를 제안하고, Mathworks사의 MATLAB Simulink tool를 이용하여 시뮬레이션을 통해 MMC시스템을 검토하고자 한다.

  • PDF

A Security-oriented Operation Scheme of FACTS Devices to Cope with A Single Line-faulted Contingency (단일 선로고장시 정적 안전도 향상을 위한 유연송전기기 운전 방안)

  • Lim, Jung-Uk
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.3
    • /
    • pp.149-155
    • /
    • 2004
  • This paper presents how to find proper operating points of FACTS devices to enhance the steady-state security level considering line contigency analysis. Three generic types of FACTS devices such as series controllers, shunt controllers, and series-shunt controllers are introduced and applied to moximize a security margin and to minimize security indices. Security indices related to line flows and bus voltages are utilized and minimized iteratively in this paper. Contingency analysis is performed to detect the most severe single line fault. In various load conditions, FACTS devices are tested to establish appropriate preventive or corrective action without generation re-dispatching or load shedding. The FACTS operation scheme is verified on the IEEE 57-bus system in a line-faulted contingency.

A Study on the Voltage Drop Compensation in AC Electric Railway (교류 전기철도의 전압강하 보상에 관한 연구)

  • Han S.W.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.896-899
    • /
    • 2003
  • The electric railway has been widely used as a transportation all over the world. It also was opened in 1973 in korea and it has been steadily proceeded in making electric railway network for a big city and building Keongbu high speed , electric railway. That's why the system of electric railway is able to solve the environmental pollution and operate the useful energy in environmental ways, it helps to increase the ability of transportation and to decrease the cost. Because of the advantage of making the economic situation better, the system of electric railway is trying to do their best in developing technique of electric railway. Because of the increasing of transportation and the high speed operation, cars with regenerative braking system was adapted. Therefore, unbalanced voltage and current of three phase system and the drop and rise of voltage of feeding circuit is expected. Now that building the substation, newly spends lots of costs and time, it is a very difficult situation to solve the problem. We can guess that electric railway line can't receive power from the power system of bigger size in building newly electric railway. In this paper, it was proved that series voltage compensator was suitable as a solution according to voltage drop and voltage fluctuating through computer simulation.

  • PDF