• Title/Summary/Keyword: 보강재 형상

Search Result 171, Processing Time 0.026 seconds

Experimental Method for Evaluating Debonding Strength of FRPs Used for Retrofitting Concrete Structures (콘크리트 휨부재 보강용 FRP의 부착성능 평가를 위한 실험방법 연구)

  • Utui, Nadia;Kim, Hee-Sun
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.2 no.3
    • /
    • pp.36-41
    • /
    • 2011
  • This study proposes a experimental method to evaluate bonding strength of FRPs used for retrofitting concrete structures. Specimens are designed so that debonding failure of FRPs can be induced from reinforced concrete beams retrofitted with two layers of carbon and glass FRPs. And three-point loading tests are performed to see if debonding failure with proper debonding strength is observed from the specimens. The test results show that the tested beams are failed due to debonding of FRPs, therefore, the proposed test method is capable of evaluating debonding strength of FRPs using relatively small normal strength concrete beams.

Analysis of fatigue crack growth behavior in composite-repaired aluminum place (복합재 패치 보강 평판의 균열선단 진전거동 해석)

  • 이우용;이정주
    • Composites Research
    • /
    • v.17 no.4
    • /
    • pp.68-73
    • /
    • 2004
  • An analytical study was conducted to characterize the fatigue crack growth behavior of pre-cracked aluminum plates repaired with asymmetric bonded composite patch. For single-sided repairs, due to the asymmetry and the presence of out-of$.$plane bending, crack front shape would become skewed curvilinear started from a uniform through-crack profile, as observed from Previous studies. Therefore, for the accurate investigation of fatigue behavior, it is necessary to predict the actual crack front evolution and take it into consideration in the analysis. In this study, the fatigue analysis of single-sided repairs considering crack front shape development was conducted by implementing three-dimensional successive finite element method coupled with linear elastic fracture mechanics (LEFM) concept, which enables the growing crack front to be directly traced and modeled in a step by step way. Through conducting present analysis technique, crack path of the patched plate as well as the fatigue life was evaluated with sufficient accuracy. The analytical predictions of both the crack front shape evolution and the fatigue life were in good agreement with the experimental observations.

A Study on the Minimum Weight Design of Stiffened Cylindrical Shells (보강원통셸의 최소중량화설계 연구)

  • 원종진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.4
    • /
    • pp.630-648
    • /
    • 1992
  • The minimum weight design for simply-supported isotropic or symmetrically laminated stiffened cylindrical shells subjected to various loads (axial compression or combined loads) is studied by a nonlinear mathematical search algorithm. The minimum weight design in accomplished with the CONMIN optimizer by Vanderplaats. Several types of buckling modes with maximum allowable stresses and strains are included as constraints in the minimum weight design process, such as general buckling, panel buckling with either stingers or rings smeared out, local skin buckling, local crippling of stiffener segments, and general, panel and local skin buckling including stiffener rolling. The approach allows the consideration of various shapes of stiffening members. Rectangular, I, or T type stringers and rectangular rings are used for stiffened cylindrical shells. Several design examples are analyzed and compared with those in the previous literatures. The unstiffened glass/epoxy, graphite/epoxy(T300/5208), and graphite/epoxy aluminum honeycomb cylindrical shells and stiffened graphite/epoxy cyindrical shells under axial compression are analyzed through the present approach.

Analytical Study on the Determination of Shape for Connector of Seismic Reinforced Strip (내진보강재의 체결부 형상결정에 대한 해석적 연구)

  • Kim, Jin-Sup;Kwon, Min-Ho;Lim, Jeong-Hee;Seo, Hyun-Su
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.4 no.3
    • /
    • pp.1-6
    • /
    • 2013
  • In this study, a shape of connector on seismic reinforced strip, which did not cause any physical damage to concrete column and can repair and reinforcement was decided by using nonlinear finite element analysis. Load displacement was applied on the concrete attached by strip. Stress distribution of connector by extension of concrete were checked. Through stress distribution of this analysis results, the most favorable shape was selected as a shape of the connector.

Hysteresis Characteristics of Buckling Restrained Brace with Precast RC Restraining Elements (조립형 프리캐스트 콘크리트 보강재를 가지는 비좌굴가새의 이력특성)

  • Shin, Seung-Hoon;Oh, Sang-Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.1
    • /
    • pp.72-84
    • /
    • 2016
  • The conventional brace system is generally accepted as the lateral load resisting system for steel structures due to efficient story drift control and economic feasibility. But lateral stiffness of the structure decreases when buckling happens to the brace in compression, so that it results in unstable structure with unstable hysteresis behavior through strength deterioration. Buckling restrained brace(BRB) system, in which steel core is confined by mortar/concrete-filled tube, represents stable behavior in the post-yield range because the core's buckling is restrained. So, seismic performance of BRB is much better than that of conventional brace system in point of energy absorption capacity, and it is applied the most in high seismicity regions as damper element. BRBs with various shaped-sections have been developed across the globe, but the shapes experimented in Korea are now quite limited. In this study, we considered built-up type of restraining member made up of precast reinforcement concrete and the steel core. we experimented the BRB according to AISC(2005) and evaluated seismic performances and hysteresis characteristics.

Strengthening of shear resistance of masonry walls (조적벽체의 전단강도 향상 방안에 관한 연구)

  • Kang, Sung-Hun;Hong, Sung-Gul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.193-196
    • /
    • 2008
  • This paper presents an experimental study to investigate enhanced performance of the masonry walls strengthened in shear and ductility using honeycomb steel mesh. The performance of masonry walls strengthened with steel mesh will compare with unreinforced masonry walls to show the performance of reinforced masonry walls. According to the experiment, it is expected that this system is effective to enhance the shear strength and ductility of the masonry walls.

  • PDF

A Study on the Improvement of Workability of High Strength Steed Fiber Reinforced Cementitious Composites (고강도 강섬유 보강 시멘트 복합체의 워커빌리티 향상에 관한 연구)

  • Koh, Kyung-Taeg;Kang, Su-Tae;Park, Jung-Jun;Ryu, Gum-Sung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.3
    • /
    • pp.141-148
    • /
    • 2004
  • This paper present the experimental research investigating the influence of material factors such as a type or amount of superplasticizer, velocity agent, mineral admixture and steel fiber on the workability of high strength steel fiber reinforced cementitious composites. As for the test results, it was found that the workability of high strength steel fiber reinforced cementitious composites can be improved when the material factors were matched properly in amount and composition. Furthermore, it was shown that the smaller value of the aspect ratio of steel fiber improved the workability of fiber reinforced cementitious composites. And the steel fiber reinforced cementitious composites with better workability showed the enhanced compressive strength and flexural strength.

Evaluation of Failure Mode in Concrete Beam Restrengthened with GFRP with Various Initial Conditions (GFRP로 보강된 다양한 초기 조건의 콘크리트보의 파괴 거동 평가)

  • Jin-Won Nam;Seung-Jun Kwon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.3
    • /
    • pp.177-183
    • /
    • 2023
  • Various failure modes occur in the concrete beams reinforced with GFRP(Glass Fiber Reinforced Plastic) under initial condition and repairing patterns. In this study, the failure behaviors of concrete beams restrengthened with GFRP sheet with slightly higher elastic modulus than concrete were investigated. For the tests, concrete beams with 24 MPa were manufactured, and the effects of initial notch, overlapping, end-strip reinforcement, and fiber anchors were analyzed on failure load. The cases of GFRP overlap around notch and the initial notch showed increasing failure loads similar to those of normal restrengthened case since the epoxy of the saturated GFRP sufficiently repaired the notch area. Compared to the control case without restrengthening of GFRP, the concrete with initial notch showed 0.78 of loading ratio and normal restrengthening showed 4.43~5.61 times of increasing ratio of failure loading, where interface-debonding from flexural crack were mainly observed. The most ideal failure behavior, break of GFRP, was observed when end-strip over 1/3 height from bottom and fiber anchor were installed, which showed increasing failure load over 150 % to normal restrengthening.

Vibration and Stress Analysis of Stiffened Box Structure (보강 박스 구조물의 진동 및 응력 해석)

  • Lee, Young-Sin;Han, Jae-Do;Han, You-Hui;Suh, Jung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.111-115
    • /
    • 1994
  • 본 연구에서는 보강 되지 않은 사각단면 박스 구조물, 보강된 사각 단면 박스 구조물, 그리고 보강된 요철형 단면 박스 구좀ㄹ에 대하여 양단 고정(clamped-clamped)과 일단 고정 타단 자유(clamped-free)의 경계 조건에 대해 실험적 진동 해석을 수행 하였으며, 유한요소 code인 ANSYS를 이용하여 유한 요소 해석을 수행하였다. 또한 유한 요소 해석과 실험을 통하여 신뢰성이 검증된 요소를 각 박스 구조물에 적용하여 각 경우에 대한 응력해석을 유한요소법을 이용하여 수행하였다. 또한 각각의 경우에 보강재의 개수 및 단면 형상 변화, 그리고 두께 변화가 진동과 응력에 미치는 민감도를 연구하였다.

  • PDF

Structural Behavior of Pre-loaded RC Beams Strengthened by SP, CFS, and CFL (재하상태에서 보강된 철근 콘크리트보의 보강 재료에 따른 구조적 거동)

  • Chung, Lan;Lee, Young-Jea;Moon, Heui-Jeung;Lee, Kyung-Un;Jung, Sang-Jin
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.1
    • /
    • pp.201-208
    • /
    • 1999
  • In recent years, strengthening by steel plate, carbon fiber sheets, and carbon fiber laminate is spotlighted in order to repair and rehabilitation of R/C structures. In this study, 3 methods of rehabilitation technique were analyzed from the test results. Test parameters were the width of cracks, the method of repair and rehabilitation, the magnitude of pre-load. Deflections, failure loads, strains of reinforcing bar, strains of carbon fiber sheet, carbon fiber laminate and steel plate were measured during the tests. The primary purpose of this research was to analyze the failure mode and structural behavior of strengthened RC beams with/without superimposed pre-load. Test results should that no significant difference was observed between with pre-loaded specimens and no-loaded specimens during rehabilitation.