• Title/Summary/Keyword: 보강설계식

Search Result 324, Processing Time 0.03 seconds

Shear Resistance Evaluation of Steel Grid Composite Deck Joint (격자형 강합성 바닥판 이음부의 전단내력 평가)

  • Shin, Hyun-Seop;Park, Ki-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.10
    • /
    • pp.5290-5298
    • /
    • 2013
  • In order to apply a mechanical deck joint to the prefabricated steel grid composite decks, shear resistance of a joint composed of concrete shear key and high-tension bolt is experimentally evaluated by the push-out test. Shear resistance evaluated by the test is compared with resistance estimated by empirical and design equations based on the shear friction theory. Test results show that joint specimens bonded by epoxy have about 10% more shear resistance than specimens with strengthened shear key by steel plates, but in the case of specimens with strengthened shear key there is smaller resistance deviation than specimens bonded by epoxy. In comparison with resistances estimated by empirical and design equations, the deck joint can be safely designed. But because the existed shear resistance of deck joint is underestimated by the ACI-318, application of the LRFD design equation could be more reasonable.

Wave runup heights on rubble-mound breakwaters by fixed-type floating breakwaters (수면에 고정된 부유식구조물 설치에 의한 사석경사제에서의 처오름높이 분석)

  • Han, Se-Jong;Yoon, Jae-Seon;Cho, Yong-Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.108-111
    • /
    • 2012
  • 최근에 태풍 매미 등 이상 기후로 인한 기상이변이 빈번히 발생함에 따라 그에 대한 대처방안을 모색하기 위해 2005년 해양수산부에서는 지역 및 해역별 특성을 분석하여 종전 설계기준을 강화하였다. 하지만, 기존에 설계된 항만 구조물의 마루높이 및 피복재 중량 등이 새로 개정된 설계기준에 미치지 못하는 등 안전성에 대한 문제가 발생하고 있으며, 이러한 문제점을 개선하기 위해 기존 방파제를 보강하는 여러 방식이 제안되고 있다. 그 중 부유식방파제는 해수의 소통을 방해하지 않는 친환경적인 구조물로써, 연약지반에 시공이 가능하고 시공 시 오탁이 적게 발생하여 시공이 편하다는 장점을 가지고 있다. 또한 구조물의 해체 및 보강시 건설폐기물을 발생시키지 않는 친환경적인 구조물이기 때문에 새로운 방식의 대체 외곽항만구조물로 관심을 받고 있다. 이에, 본 연구에서는 사석경사제 전면에 부유식구조물을 설치하여 방파제 보강하는 방안을 제시하고자, 부유식구조물을 통과한 파랑이 사석경사제와 만나 발생하는 처오름높이를 분석하였다. 본 수치모의에서는 유체의 점성 및 난류특성을 포함하고 있는 Navier-Stokes 방정식을 그대로 해석하는 2차원 수치파동수조(CADMAS-SURF)를 이용하여 수치 모의을 수행하였다. 부유식구조물은 불투수성구조물로 수면에 고정시키는 방식을 적용하여 사석경사제의 전면에 설치하였으며, 고정된 부유식구조물의 흘수심을 변화시켜 사석경사제에서의 처오름높이를 산정하였다.

  • PDF

Premature Failure Load of Reinforced Concrete Beams with Flexural Strengthened by Steel Plates (강판으로 휨 보강된 철근콘크리트 보의 조기파괴하중 산정)

  • Kim, Haeng-Jun;Kim, Woo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.1
    • /
    • pp.283-292
    • /
    • 2005
  • This paper predicts premature failure load of reinforced concrete beams by epoxy-boned partially steel plates. A parametric study is conducted to estimate premature failure load of beams such as with or without stirrups, unplated length ratio, steel and reinforcement ratio, shear span to depth ratio of reinforcement beam. By results of finite element analysis, it turned out that the unplated length played a dominant role in partially plated beams but reinforcement ratio and shear span to depth ratio effected the premature failure load. The approximate expression with regard to combined design variables is compared with experimental results. It shows closely agreement.

Mechanical behaviour of rib-reinforced precast tunnel liner according to variable rib-reinforcement shapes (프리캐스트 터널 Liner의 리브보강 형상변화에 따른 역학적 거동 특성)

  • Lee, Gyu-Phil;Lee, Seong-Won;Hwang, Jae-Hong
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.3
    • /
    • pp.265-275
    • /
    • 2009
  • Due to the limitation of construction efficiency and structural safety, the application of the high covering and wide width tunnels was limited prior to the introduction of precast rut and cover tunnels. Therefore, a cut and cover tunnel structure with rib reinforcement is proposed to mechanically improve the safety on condition of high covering and wide width tunnel. Therefore, a technical problem that can provide a response similar to the actual filling conditions is analyzed by the finite element analyses, moreover, the mechanical behaviour of developed rib-reinforced precast tunnel liner through a large-sized model test will be investigated. The ultimate load of the developed rib-reinforced precast tunnel liner shows a 3% reduction compared to existing rib-reinforced precast tunnel liner, especially, the section of rib-reinforcement decreased to 55% compared to it of existing. Therefore, the stability of tunnel structure can be significantly improved through the developed rib-reinforced precast segment.

Seismic Retrofit Design Procedure Using a Friction Damper (마찰 감쇠기를 사용한 구조물의 보강 설계법 제안)

  • Moon, Ki-Hoon;Han, Sang-Whan;Jo, Han-Chul;Lee, Kang-Seok
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.6
    • /
    • pp.45-53
    • /
    • 2011
  • The purpose of this study was to propose a design procedure for a damped structure with a friction damper for an existing structure. The target displacement of the damped structure was determined using the maximum displacement of the existing structure. The displacement of the damped structures was predicted using a proposed equation for the inelastic displacement ratio. For this study, we conducted a nonlinear response history analysis using 80 earthquake ground motions to verify the validity of the proposed design procedure by comparing the responses of the damped and undamped structures. Based on the dynamic analysis results, it was concluded that the predicted displacement of the damped structure using the proposed design procedure matched well with the analysis results.

Evaluation of Seismic Safety in School Buildings Applying Artificial Seismic Waves in Earthquake Magnitude of Korea (한국형 중진지역의 인공지진파 생성을 통한 학교건물 내진안전성 평가)

  • Kim, Seung-Hyun;Park, Young-Binuk;Kang, Jun-Suk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.1
    • /
    • pp.10-18
    • /
    • 2022
  • This report describes the development and stability evaluation of a seismic retrofit method to evaluate the seismic performance of existing school buildings by analyzing the earthquake waveforms that occurred in Korea. Currently, Facilities for seismic retrofit designed for excessive reinforcement are being applied. To compensate for this, optimised the retrofit mothod suitable for domestic situation considering the characteristics of the seismic region, generated a Korean-style artificial seismic wave that meets the seismic design criteria, which is less frequent than other countries.

Model Tests on the Reinforcement Effect of Unattached Strips to the Cantilever Retaining Wall (비정착 띠보강재의 역T형 옹벽 보강효과에 관한 모형실험)

  • Han, Gyeong-Je;Kim, Un-Yeong;Kim, Myeong-Mo
    • Geotechnical Engineering
    • /
    • v.14 no.2
    • /
    • pp.31-40
    • /
    • 1998
  • To verify the reinforcing effect of the strips which are inserted in the backfill, but not connected to the face wall, model tests are executed. As the reinforcing effect is expected to reduce the active thrust acting on the retaining wall, test programmes included the measurements of the thrust. As a result. it is ascertained that the active thrusts are reduced by as much as 50%. Besides, efficient arrangement and the optimum length of the strips are verified. And the the number of reinforcing strips are increased, are close to the Rankine's hypothesis.

  • PDF

Experimental and Analytical Study on the Fracture Strength of RC Beams Strengthened for Flexure with GFRP Involving the Debonding of FRP Reinforcement (보강재 박리에 의한 GFRP 휨 보강 RC보의 파괴강도에 관한 실험 및 해석적 연구)

  • Lee, Jong-Han;Kwon, Hyuck Bae;Kang, Su Tae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.1
    • /
    • pp.39-48
    • /
    • 2015
  • Reinforced concrete (RC) structures strengthened with FRP materials would cause the loss of the reinforcing effect and the sudden failure of the structure due to the debonding of FRP. The debonding fracture strength of the FRP-strengthened concrete structures has been evaluated using the same strength method as applied in RC structures based on the debonding strain of FRP. However, the values of the FRP debonding strain are different according to design guidelines. Thus, this study carried out an experimental study on RC beams reinforced with GFRP and evaluated the debonding fracture strength of the strengthened beams from each design guideline. Since the debonding failure occurs prior to reaching the ultimate value of concrete compressive strain, this study accounts for the nonlinear stress distribution of concrete. This study also proposed equations that can evaluate the debonding strength of GFRP-strengthened RC beams with similar safety to the ultimate flexural strength of non-strengthened RC beams.

Prediction of Separation Load and Failure Mechanism of Reinforced Concrete Beams strengthened with Steel Plates (강판 휨보강된 철근콘크리트보의 파괴기구 및 박리하중산정 이론연구)

  • 오병환;강동옥;조재열
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.6
    • /
    • pp.243-254
    • /
    • 1997
  • 최근들어 구조물의 노후화와 차량하중 등의 증가로 구조물의 손상이 커지고 있으며 보강의 필요성이 절실히 대두되고 있다. 강판보강공법은 강성의 확실한 증가와 내구성 등으로 인하여 그 동안 폭넓게 사용되어 오고 있으나 효율적 보강을 위한 공법과 이론이 아직까지도 정립되지 않은 상태이다. 따라서 본 연구의 목적은 그 동안의 실험결과를 중심으로 보강도니 철근콘크리트보의 파괴기구와 박리거동을 분석하고 이로부터 합리적인 박리하중 산정이론을 제한하는데 그 목적을 두고 있다. 보강된 강판의 길이와 두께 등의 영향을 고찰하고,기존의 이론을 분석하여 기존이론의 불합리한 점을 밝혔으며, 이들을 보완한 수정이론을 제시하엿다. Roberts의 이론은 강판의 두께가 증가함에 따라 오히려 박리하중이 약간 증가하고 있어 실제적인 실험거동과 차이가 나고 있다. 본 연구의 제안식은 실제 거동을 합리적으로 표현하고 있으며, 앞으로 보강설계에 유용한 자료가 될 것으로 기대되고 있다.

Mechanical Characteristics of Ultra High Strength Concrete with Steel Fiber Under Uniaxial Compressive Stress (강섬유로 보강된 초고강도 콘크리트의 일축압축 상태에서의 기계적 특성)

  • Choi, Hyun-Ki;Bae, Baek-Il;Choi, Chang-Sik
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.5
    • /
    • pp.521-530
    • /
    • 2015
  • Design of fiber reinforced ultra-high strength concrete members should be verified with analytical or experimental methods for safety. Members with compressive strength larger than limitation of current design code usually be designed with analytical verification using stress-strain relation of concrete and reinforcements. For this purpose, mechanical characteristics of steel fiber reinforced ultra-high strength concrete were defined under uniaxial compression. Mix proportions of test specimens were based on reactive powder concrete and straight steel fibers were mixed with different volume fraction. Compressive strength of matrix were distributed from 80 MPa to 200 MPa. Effect of fiber inclusion were investigated : increase of compressive strength of concrete, elastic modulus and strain corresponding to peak stress. For the wide range application of investigation, previously tested test specimens were collected and used for investigation and estimation equation. Based on the investigation and evaluation of previous research results and estimation equation of mechanical characteristics of concrete, regression equations were suggested.