• Title/Summary/Keyword: 보강상세

Search Result 245, Processing Time 0.023 seconds

Effect of Aspect Ratio and Diagonal Reinforcement on Shear Performance of Concrete Coupling Beams Reinforced with High-Strength Steel Bars (세장비 및 대각철근 유무에 따른 고강도 철근보강 콘크리트 연결보의 전단성능)

  • Kim, Sun-Woo;Jang, Seok-Joon;Yun, Hyun-Do;Seo, Soo-Yeon;Chun, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.1
    • /
    • pp.43-51
    • /
    • 2017
  • As per current seismic design codes, diagonally reinforced coupling beams are restricted to coupling beams having aspect ratio below 4. However, a grouped diagonally reinforcement detail makes distribution of steel bars in the beam much harder, furthermore it may result in poor construction quality. This paper describes the experimental results of concrete coupling beam reinforced with high-strength steel bars (SD500 & SD600 grades). In order to improve workability for fabricating coupling beams, a headed large diameter steel bar was used in this study. Two full-scale coupling beams were fabricated and tested with variables of reinforcement details and aspect ratio. To reflect real behavior characteristic of the beam coupling shear walls, a rigid steel frame system with linked joints was set on the reaction floor. As a test result, it was noted that cracking and yielding of reinforcement were initially progressed at the coupling beam-to-shear wall joint, and were progressed to the mid-span of the coupling beam, based on the steel strain and failure modes. It was found that the coupling beams have sufficient deformation capacity for drift ratio of shear wall corresponding to the design displacement in FEMA 450-1. In this study, the headed horizontal steel bar was also efficient for coupling beams to exhibit shear performance required by seismic design codes. For detailed design for coupling beam reinforced with high-strength steel, however, research about the effect of variable aspect ratios on the structural behavior of coupling beam is suggested.

Effect of Reinforcement Details on the Seismic Performance of Precast HPFRCC Coupling Beams (보강상세에 따른 프리캐스트 HPFRCC 커플링 보의 내진성능)

  • Kim Sun Woo;Yun Hyun Do;Park Wan Shin;Jeon Esther
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.81-84
    • /
    • 2005
  • In order to effectively resist seismic loads, coupling beams must be sufficiently stiff, strong and posses a stable load-deflection hysteretic response. This paper reports experimental data on the seismic performance of precast HPFRCC coupling beams with variable details. Precast HPFRCC coupling beam was tested to evaluate their failure modes. shear behavior, micro crack pattern and energy dissipation. Based on the experimental results, precast coupling beam with diagonal and rhombic details offer greater performance and ductility than coupling beam with normal detail.

  • PDF

Inelastic behavior of RC shear wall and steel girder shear connection on reinforcement details (보강상세에 따른 RC 전단벽과 강재 보 전단접합부의 비탄성 거동)

  • Song, Han-Beom;Lee, Jung-Han;Yang, Won-Jik;Kang, Dae-Eon;Lee, Kyung-Hwun;Yi, Waon-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.138-141
    • /
    • 2006
  • Shear wall-frame system is one of the most, if not the most, popular system for resisting lateral loads. The core is the primary lateral load-resisting systems, the perimeter frame is designed for gravity loads, and the connection between perimeter frame and core is generally a shear connection. Specially, single plate shear connection have gained considerable popularity in recent years due to their ease of fabrication and erection. Single plate shear connection should be designed to satisfy the dual criteria of shear strength and rotational ductility. An experimental program was undertaken to evaluate seismic behavior of single plate shear connection. The main test variable is the reinforcing detail of connection. Through the experimental program, the cyclic behavior of typical and reinforcing single plate shear connection was established.

  • PDF

Study on the Joint Detail between PHC pile and Structural Foundation (PHC말뚝과 기초판 접합부 상세에 관한 연구)

  • Chun, Young-Soo;Park, Jong-Bae;Sim, Young-Jong;Kang, In-Seok
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.29-30
    • /
    • 2009
  • In this study, analyzing loads transferred to the piles, both easily constructed and mechanically improved pile head design method for the PHC pile is presented. To compare with mechanical capacity of the existing and proposed method, tensile, compression, moment, and shear tests are performed with 11 pieces of full-scaled blocks. As a result, mechanical capacities of the proposed method is superior to those of existing one in all aspects and work efficiency as well.

  • PDF

Strengthening Effects of R.C. Beams using Externally attached CFRP Composites with Bond[ Details (CFRP로 보강된 RC보의 부착상세에 따른 보강효과)

  • 박종섭;박영환;조정래;유영준;정우태
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.591-596
    • /
    • 2003
  • Many studies have dealt with strengthening by epoxy-bonded CFRP(Carbon Fiber Reinforced Polymer) composites. However, the effects of various influencing factors have not been clarified on the behavior of strengthened RC beams. This study was performed to verify the effects of strengthening due to various bond details of externally attached CFRP Composites. In this study, major test parameters include the bond type and the anchor type. The deflections, failure load, strain of reinforcing bar, concrete and CFRP are measured at each loading step. The failure mode and debonding loads(ultimate loads) are analysed from these measured data. According to the test results, all specimens are failed by intermediate flexural crack induced interfacial debonding.

  • PDF

Analytical Study on the Improvement of Fatigue Strength for the Orthotropic Steel Decks with Reinforced Structural Details (보강상세 적용에 따른 강바닥판 피로강도 향상에 관한 해석적 연구)

  • Kyung, Kab-Soo;Park, Kyung-Jin;Kin, Kyo-Hoon;Park, Hye-Yeon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.839-844
    • /
    • 2007
  • In order to reduce resultant stress of the connection detail of longitudinal and rib and floor beam, in this study, the parameter studies for the reinforcement details as the bulk head and the vertical rib were preformed with FE analysis. As the result, it was shown that reinforcement detail with the bulk head plate in longitudinal rig reduced generally the principal stress at the connection detail, but the stress concentration of the weld toe parts occurring fatigue crack increased. However, it was known that the reinforcement detail with the vertical rib in the rib is more effective than the bulk head plate of the reduction stress concentration in the weld toe parts.

  • PDF

Analytical Investigation on Strengthening Details of RC Beams Strengthened with NSMR (NSM보강 RC보의 보강 상세에 대한 해석)

  • Kang, Jae-Yoon;Park, Young-Hwan;Park, Jong-Sup;You, Young-Jun;Jung, Woo-Tai
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.195-198
    • /
    • 2005
  • To investigate the strengthening efficiency of the Near Surface Mounted Reinforcement (NSMR) technique analytically, a structural model for the finite element method (FEM) able to simulate accurately the experimental results was determined. Applying the finite element model, parametric analysis was performed considering the groove depth and spacing of CFRP laminates. Analytical study on the groove depth revealed the existence of a critical depth beyond which the increase of the ultimate load becomes imperceptible. Analytical results regard to the spacing of the CFRP laminates showed that comparatively smooth fluctuations of the ultimate load were produced by the variation of the spacing and the presence of an optimal spacing range for which relatively better strengthening efficiency can be obtained. Particularly, a spacing preventing the interference between adjacent CFRP laminates and the influence of the concrete cover at the edges as well as allowing the CFRP laminatesto behave independently was derived.

  • PDF

Effects of details of lattice reinforcement for punching shear strength of slab-column connections (슬래브-기둥 접합부의 뚫림 전단강도에 대한 래티스 보강상세의 영향)

  • Kim, You-Ni;Park, Hong-Gun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.17-20
    • /
    • 2006
  • A flat plate-column connection is susceptible to brittle punching shear failure, which may result in the necessity of shear reinforcement. In previous, experimental tests were performed to study the capacity of slab-column connections strengthened with various shear reinforcement, and the capacity of the specimens with lattice reinforcement are superior to the others. In present study, to study for effects of details of lattice reinforcement, experimental studies was performed. Main parameters are the amount of lattice shear reinforcement, arrangement of lattice and the effect of flexural re-bar. And capacity of the specimen with small amount of lattice reinforcement was higher than the capacity of other shear reinforcement.

  • PDF

Derivation of Effective Material Properties of Reinforced Braid Layer Using Detailed 3-D Finite Element Model (상세 유한요소 모델을 이용한 섬유 보강사의 등가물성 유도)

  • Song, Jeong-In;Cho, Jin-Rae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.11
    • /
    • pp.1752-1759
    • /
    • 2004
  • Reinforced braid layer (RBL) in automobile power steering hose plays an important role in power steering system. When the working oil is applied to the power steering hose, RBL suppresses rubber hose deformation from internal pressure and heat expansion. RBL is woven textile composites having a double-row structure of nylon cords twisted with the specific helix angle. In this paper, effective material properties of RBL are estimated using a detailed 3-D finite element model considering its complicated geometry. Numerical experiments based on a superposition method are carried out to simulate uniaxial tensile loading condition.

Experimental Study on the Tensile Behaviors of Stud Connection with Hanger (행거로 보강된 스터드 접합부의 인장거동에 관한 실험적 연구)

  • Kim, Seung-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.4
    • /
    • pp.231-238
    • /
    • 2004
  • This paper presents the tensile behavior of the stud connection between reinforced concrete(RC) and steel members. Hanger reinforcements are placed around the studs to transfer the tensile and flexural loads to the opposite side of the concrete member. Eight specimens for the tensile tests are tested with variables, which are the arrangement details of hanger reinforcements, the reinforcing bars, and the embedment length of stud. The results of the tensile tests show that hanger reinforcements are effective to increase tensile strength for stud connections. Hangers and reinforcing bars near stud bolts contributed to the reduction of brittle failure. From the evaluation on the tensile strength by previous design guidelines, it was shown that CCD (Concrete Capacity Design) method was more suitable for estimation of test strength.