• Title/Summary/Keyword: 보간모델

Search Result 316, Processing Time 0.029 seconds

Patch Information based Linear Interpolation for Generating Super-Resolution Images in a Single Image (단일이미지에서의 초해상도 영상 생성을 위한 패치 정보 기반의 선형 보간 연구)

  • Han, Hyun-Ho;Lee, Jong-Yong;Jung, Kye-Dong;Lee, Sang-Hun
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.6
    • /
    • pp.45-52
    • /
    • 2018
  • In this paper, we propose a linear interpolation method based on patch information generated from a low - resolution image for generating a super resolution image in a single image. Using the regression model of the global space, which is a conventional super resolution generation method, results in poor quality in general because of lack of information to be referred to a specific region. In order to compensate for these results, we propose a method to extract meaningful information by dividing the region into patches in the process of super resolution image generation, analyze the constituents of the image matrix region extended for super resolution image generation, We propose a method of linear interpolation based on optimal patch information that is searched by correlating patch information based on the information gathered before the interpolation process. For the experiment, the original image was compared with the reconstructed image with PSNR and SSIM.

Development of Subsurface Spatial Information Model System using Clustering and Geostatistics Approach (클러스터링과 지구통계학 기법을 이용한 지하공간정보 모델 생성시스템 개발)

  • Lee, Sang-Hoon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.11 no.4
    • /
    • pp.64-75
    • /
    • 2008
  • Since the current database systems for managing geotechnical investigation results were limited by being described boring test result in point feature, it has been trouble for using other GIS data. Although there are some studies for spatial characteristics of subsurface modeling, it is rather lack of being interoperable with GIS, considering geotechnical engineering facts. This is reason for difficulty of practical uses. In this study, we has developed subsurface spatial information model through extracting needed geotechnical engineering data from geotechnical information DB. The developed geotechnical information clustering program(GEOCL) has made a cluster of boring formation(and formation ratio), classification of layer, and strength characteristics of subsurface. The interpolation of boring data has been achieved through zonal kriging method in the consideration of spatial distribution of created cluster. Finally, we make a subsurface spatial information model to integrate with digital elevation model, and visualize 3-dimensional model by subsurface spatial information viewing program(SSIVIEW). We expect to strengthen application capacity of developed model in subsurface interpretation and foundation design of construction works.

  • PDF

Segmentation and Compression Techniques for 3D Animation Models (삼차원 애니메이션 모델의 분할 및 부호화 방법)

  • 안정환;임동근;호요성
    • Proceedings of the IEEK Conference
    • /
    • 2000.09a
    • /
    • pp.353-356
    • /
    • 2000
  • 최근 복잡한 실제 사물을 가상 공간상에 표현하기 위해 삼차원 모델을 많이 이용하고 있다. 기존의 삼차원 데이터 처리는 주로 정지 모델에 대해 기하학 정보와 위상학 정보를 표현하거나 다중 해상도(Level of Details, LOD)로 나타내는데 역점을 두었다. 그러나 네트웍을 통한 가상 공간에서 삼차원 애니메이션에 대한 응용이 점차 늘어남에 따라 이러한 데이터를 효율적으로 압축하여 전송하거나 저장할 필요가 생겼다 본 논문에서는 삼차원 애니메이션 모델의 공간적 또는 시간적 상관 관계를 이용하여 삼차원 모델 정보를 부호화하는 방법을 제안한다. 먼저 주어진 모델의 움직임을 분석하고 이를 (r,θ,ø)의 구 좌표계로 변환한 후 (θ,ø)의 분포에 따라 모델을 분할(Segmentation)한다. 그리고 움직임 벡터는 Affine 변환을 이용하여 삼차원 공간에서의 움직임을 정의한다. Key프레임에 해당하는 정지 모델의 기하학 정보와 위상학 정보를 압축하고, LOD 기술을 적용하여 손실 혹은 무손실로 부호화하여 전송한다. 또한 Key프레임 사이의 화면에서는 선형 또는 비선형 보간법으로 각 분할 부분을 복원하고, 이를 조합하여 전체적인 삼차원 모델을 복원한다.

  • PDF

A Study on Cutting Pattern Generation of Membrane Structures Using Spline Curves (스플라인 곡선을 이용한 막구조물의 재단도 작성에 관한 연구)

  • Shon, Su-Deok;Lee, Seung-Jae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.12 no.1
    • /
    • pp.109-119
    • /
    • 2012
  • For membrane structure, there are three main steps in design and construction, which are form finding, statistical load analysis, and cutting patterning. Unlike the first two stages, the step of cutting pattern involves the translation of a double-curved surface in 3D space into a 2D plane with minimal error. For economic reasons, the seam lines of generated cutting patterns rely greatly on the geodesic line. Generally, as searching regions of the seam line are plane elements in the step of shape analysis, the seam line is not a smooth curve, but an irregularly divided straight line. So, it is how we make an irregularly divided straight line a smooth curve that defines the quality of the pattern. Accordingly, in this paper, we analyzed interpolation schemes using spline, and apply these methods to cutting pattern generation on the curved surface. To generate the pattern, three types of spline functions were used, i.e., cubic spline function, B-spline, and least-square spline approximation, and simple model and the catenary-shaped membrane was adopted to examine the result of generation. The result of comparing the approximation curves by the number of elements and the number of extracted nodes of simple model revealed that the seam line for less number of extracted nodes with large number of elements were more efficient, and the least-square spline approximation provided smoother seam line than other methods.

Performance Improvement of Towed Array Shape Estimation Using Interpolation (보간법을 이용한 견인 어레이 형상 추정 기법의 성능 개선)

  • 박민수;도경철;오원천;윤대희;이충용
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.3
    • /
    • pp.72-76
    • /
    • 2000
  • A calibration technique is proposed to improve the performance of 2-D towed array shape estimation using the Kalman filter. In the case of using displacement sensors, 2-D hydrophone positions estimated by the Kalman filter are calculated by assuming that the adjacent hydrophones are horizontally equi-spaced so that maximum distance is equal to the array length. The assumption causes errors in estimating hydrophone positions. The proposed technique using linear model approximation or spline interpolation can reduce the errors by exploiting the fact that the whole length of array is preserved whatever the array shape is. The numerical experiments show that the proposed method is very effective.

  • PDF

Numerical Quadrature Techniques for Inverse Fourier Transform in Two-Dimensional Resistivity Modeling (2차원 전기비저항 모델링에서 후리에역변환의 수치구적법)

  • Kim, Hee Joon
    • Economic and Environmental Geology
    • /
    • v.25 no.1
    • /
    • pp.73-77
    • /
    • 1992
  • This paper compares numerical quadrature techniques for computing an inverse Fourier transform integral in two-dimensional resistivity modeling. The quadrature techniques using exponential and cubic spline interpolations are examined for the case of a homogeneous earth model. In both methods the integral over the interval from 0 to ${\lambda}_{min}$, where ${\lambda}_{min}$, is the minimum sampling spatial wavenumber, is calculated by approximating Fourier transformed potentials to a logarithmic function. This scheme greatly reduces the inverse Fourier transform error associated with the logarithmic discontinuity at ${\lambda}=0$. Numrical results show that, if the sampling intervals are adequate, the cubic spline interpolation method is more accurate than the exponential interpolation method.

  • PDF

Performance Comparison of Block-based Distortion Estimations for FRUC Techniques (FRUC 기술을 위한 블록별 왜곡 크기 추정기법의 성능비교)

  • Kim, Jin-Soo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.927-929
    • /
    • 2011
  • Since DVC (Distributed Video Coding) and FRUC (Frame Rate Up Conversion) techniques need to have an efficient motion compensated frame interpolation algorithms. Conventional works of these applications have mainly focused on the performance improvement of overall system. But, in some applications, it is necessary to evaluate how well the MCI (Motion Compensated Interpolation) frame matches the original frame. For this aim, this paper deals with the modeling methods for evaluating the block-based matching cost. First, several matching criteria, which have already been dealt with the motion compensated frame interpolation, are introduced and then combined to make estimate models for the size of MSE (Mean Square Error) noise of the MCI frame to original one. Through computer simulations, it is shown that the block-based cost evaluation models are tested and can be effectively used for estimating the MSE noise.

  • PDF

Generating Dynamic Virtual Light Sources by Interpolating HDR Environment Maps (HDR 환경 맵 보간을 이용한 동적 가상 조명 생성)

  • Hwang, Gyuhyun;Park, Sanghun
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.11
    • /
    • pp.1399-1408
    • /
    • 2012
  • The light source is an important visual component that empirically affects the color and illumination of graphic objects, and it is necessary to precisely store and appropriately employ the information of all light sources in the real world in order to obtain photo-realistic composition results. The information of real light sources can be accurately stored in HDR environment maps; however, it is impossible to create new environment maps corresponding to dynamic virtual light sources from a single HDR environment map captured under a fixed lighting situation. In this paper, we present a technique to dynamically generate well-matched information for arbitrarily selected virtual light sources using HDR environment maps created under predefined lighting position and orientation. Using the information obtained from light intensity and distribution analysis, our technique automatically generates HDR environment maps for virtual light sources via image interpolation. By applying the interpolated environment maps to an image-based lighting technique, we show that virtual light can create photo-realistically rendered images for graphic models.

Development of Range-Dependent Ray Model for Sonar Simulator (소나 시뮬레이터용 거리 종속 음선 모델 개발)

  • Jung, Young-Cheol;Lee, Keunhwa;Seong, Woojae;Kim, Hyoung-Rok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.3
    • /
    • pp.163-173
    • /
    • 2014
  • Sound propagation algorithm for a sonar simulator is required to run in real-time and should be able to model the range and depth dependence of the Korean ocean environments. Ray model satisfies these requirements and we developed an algorithm for range-dependent ocean environments. In this algorithm, we considered depth-dependence of sound speed through rays based on a rectangular cell method and layer method. Range-dependence of sound speed was implemented based on a split-step method in the range direction. Eigen-ray is calculated through an interpolation of ray bundles and Gaussian interpolation function was used. The received time signal of sonar was simulated by Fourier transform of eigen-ray solution in the frequency domain. Finally, for the verification of proposed algorithm, we compared the results of transmission loss with other validated models such as BELLHOP, SNUPE, KRAKEN and OASES, for the Pekeris waveguide, wedge, and deep ocean environments. As a result, we obtained satisfactory agreements among them.

A Baseline Correction for Effective Analysis of Alzheimer’s Disease based on Raman Spectra from Platelet (혈소판 라만 스펙트럼의 효율적인 분석을 위한 기준선 보정 방법)

  • Park, Aa-Ron;Baek, Sung-June
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.49 no.1
    • /
    • pp.16-22
    • /
    • 2012
  • In this paper, we proposed a method of baseline correction for analysis of Raman spectra of platelets from Alzheimer's disease (AD) transgenic mice. Measured Raman spectra include the meaningful information and unnecessary noise which is composed of baseline and additive noise. The Raman spectrum is divided into the local region including several peaks and the spectrum of the region is modeled by curve fitting using Gaussian model. The additive noise is clearly removed from the process of replacing the original spectrum with the fitted model. The baseline correction after interpolating the local minima of the fitted model with linear, piecewise cubic Hermite and cubic spline algorithm. The baseline corrected models extract the feature with principal component analysis (PCA). The classification result of support vector machine (SVM) and maximum $a$ posteriori probability (MAP) using linear interpolation method showed the good performance about overall number of principal components, especially SVM gave the best performance which is about 97.3% true classification average rate in case of piecewise cubic Hermite algorithm and 5 principal components. In addition, it confirmed that the proposed baseline correction method compared with the previous research result could be effectively applied in the analysis of the Raman spectra of platelet.