• Title/Summary/Keyword: 병렬 유한요소 해석

Search Result 71, Processing Time 0.023 seconds

Computational Efficiency on Frequency Domain Analysis of Large-scale Finite Element Model by Combination of Iterative and Direct Sparse Solver (반복-직접 희소 솔버 조합에 의한 대규모 유한요소 모델의 주파수 영역 해석의 계산 효율)

  • Cho, Jeong-Rae;Cho, Keunhee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.2
    • /
    • pp.117-124
    • /
    • 2019
  • Parallel sparse solvers are essential for solving large-scale finite element models. This paper introduces the combination of iterative and direct solver that can be applied efficiently to problems that require continuous solution for a subtly changing sequence of systems of equations. The iterative-direct sparse solver combination technique, proposed and implemented in the parallel sparse solver package, PARDISO, means that iterative sparse solver is applied for the newly updated linear system, but it uses the direct sparse solver's factorization of previous system matrix as a preconditioner. If the solution does not converge until the preset iterations, the solution will be sought by the direct sparse solver, and the last factorization results will be used as a preconditioner for subsequent updated system of equations. In this study, an improved method that sets the maximum number of iterations dynamically at the first Krylov iteration step is proposed and verified thereby enhancing calculation efficiency by the frequency domain analysis.

Parallel Contact Treatment and Parallel Performance of Impact Simulation Based on Lagrangian Scheme (Lagrangian 기법에 의한 충돌 해석 시 접촉처리의 병렬화 및 병렬효율 평가)

  • Back, Seung-Hoon;Kim, Seung-Jo;Lee, Min-Hyung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.11 s.254
    • /
    • pp.1447-1454
    • /
    • 2006
  • The evaluation of parallel performance of a high speed impact simulation is not an easy task because not only the development of parallel explicit code is difficult but also a large number of processors is not easily accessible. In this paper, the parallel performance of a new Lagrangian FEM impact code carried out on cluster supercomputer has been described in high speed range. In the case of metal sphere impacting to oblique plate, the overall speed-up continuously increases even up to 128 CPUs. Investigation of elapsed time of each part reveals that most of the inefficiency comes from the load imbalance of contact.

Efficient 3D Modeling of CSEM Data (인공송신원 전자탐사 자료의 효율적인 3차원 모델링)

  • Jeong, Yong-Hyeon;Son, Jeong-Sul;Lee, Tae-Jong
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.75-80
    • /
    • 2009
  • Despite its flexibility to complex geometry, three-dimensional (3D) electromagnetic(EM) modeling schemes using finite element method (FEM) have been faced to practical limitation due to the resulting large system of equations to be solved. An efficient 3D FEM modeling scheme has been developed, which can adopt either direct or iterative solver depending on the problems. The direct solver PARDISO can reduce the computing time remarkably by incorporating parallel computing on multi-core processor systems, which is appropriate for single frequency multi-source configurations. When limited memory, the iterative solver BiCGSTAB(1) can provide fast and stable convergence. Efficient 3D simulations can be performed by choosing an optimum solver depending on the computing environment and the problems to be solved. This modeling includes various types of controlled-sources and can be exploited as an efficient engine for 3D inversion.

  • PDF

Computational Algorithm for Nonlinear Large-scale/Multibody Structural Analysis Based on Co-rotational Formulation with FETI-local Method (Co-rotational 비선형 정식화 및 FETI-local 기법을 결합한 비선형 대용량/다물체 구조 해석 알고리듬 개발)

  • Cho, Haeseong;Joo, HyunShig;Lee, Younghun;Gwak, Min-cheol;Shin, SangJoon;Yoh, Jack J.
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.9
    • /
    • pp.775-780
    • /
    • 2016
  • In this paper, a computational algorithm of an improved and versatile structural analysis applicable for large-size flexible nonlinear structures is developed. In more detail, nonlinear finite element based on the co-rotational (CR) framework is developed. Then, a finite element tearing and interconnecting method using local Lagrange multipliers (FETI-local) is combined with the nonlinear CR finite element. The resulting computational algorithm is presented and applied for nonlinear static analyses, i.e., cantilevered beam and multibody structure. Finally, the proposed analysis is evaluated with regard to its parallel computation performance, and it is compared with those obtained by serial computation using the sparse matrix linear solver, PARDISO.

Parallel Computation of a Flow Field Using FEM and Domain Decomposition Method (영역분할법과 유한요소해석을 이용한 유동장의 병렬계산)

  • Choi Hyounggwon;Kim Beomjun;Kang Sungwoo;Yoo Jung Yul
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.55-58
    • /
    • 2002
  • Parallel finite element code has been recently developed for the analysis of the incompressible Wavier-Stokes equations using domain decomposition method. Metis and MPI libraries are used for the domain partitioning of an unstructured mesh and the data communication between sub-domains, respectively. For unsteady computation of the incompressible Navier-Stokes equations, 4-step splitting method is combined with P1P1 finite element formulation. Smagorinsky and dynamic model are implemented for the simulation of turbulent flows. For the validation performance-estimation of the developed parallel code, three-dimensional Laplace equation has been solved. It has been found that the speed-up of 40 has been obtained from the present parallel code fir the bench mark problem. Lastly, the turbulent flows around the MIRA model and Tiburon model have been solved using 32 processors on IBM SMP cluster and unstructured mesh. The computed drag coefficient agrees better with the existing experiment as the mesh resolution of the region increases, where the variation of pressure is severe.

  • PDF

Analysis of Reinforced Concrete Panel subjected to Blast Load using Parallel and Domain Decomposition (병렬과 영역분할을 이용한 폭발하중을 받는 철근콘크리트패널의 해석)

  • Park, Jae-Won;Yun, Sung-Hwan;Park, Tae-Hyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.4
    • /
    • pp.365-373
    • /
    • 2011
  • Damage of reinforced concrete panel subjected to blast load using parallel and domain decomposition is analyzed. The numerical results are sensitive to the mesh size because blast waves are generated during the extremely short term. In order to investigate the effect of mesh size on the blast wave, the analysis results from various wave mesh size using AUTODYN, the explicit finite element analysis program, were compared with existing experimental results. The smaller mesh size was, the higher accuracy was. However, in this case, the analysis was inefficient. Therefore, in order to increase numerical efficiency, the parallel analysis using decomposed method based on Euler and Lagrangian description was performed. Finally, the decomposed method using both the structure domain based on Lagrange description and the blast wave domain based on Euler description was more efficient than the decomposed method using only the Lagrange mesh on structure domain.

Scheduling and Load Balancing Methods of Multithread Parallel Linear Solver of Finite Element Structural Analysis (유한요소 구조해석 다중쓰레드 병렬 선형해법의 스케쥴링 및 부하 조절 기법 연구)

  • Kim, Min Ki;Kim, Seung Jo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.5
    • /
    • pp.361-367
    • /
    • 2014
  • In this paper, task scheduling and load balancing methods of multifrontal solution methods of finite element structural analysis in a modern multicore machine are introduced. Many structural analysis problems have generally irregular grid and many kinds of properties and materials. These irregularities and heterogeneities lead to bottleneck of parallelization and cause idle time to analysis. Therefore, task scheduling and load balancing are desired to reduce inefficiency. Several kinds of multithreaded parallelization methods are presented and comparison between static and dynamic task scheduling are shown. To reduce the idle time caused by irregular partitioned subdomains, computational load balancing methods, Balancing all tasks and minmax task pairing balancing, are invented. Theoretical and actual elapsed time are shown and the reason of their performance gap are discussed.

Assessment of minimum pillar width and reinforcement of parallel tunnel using numerical analysis and field monitoring (수치해석과 현장계측을 통한 병렬터널의 최소 필라폭과 보강에 대한 평가)

  • An, Yong-Koan;Kong, Suk-Min;Lee, Yong-Joo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.3
    • /
    • pp.299-310
    • /
    • 2014
  • Nationally, tunnel and underground constructions are necessary for the environmental sustainability and the efficient use of land space. For the importance of eco-friendly circumstances, 2-arch or large road tunnel has been designed so far. However, such a 2-arch or large tunnel has problems in terms of cost, constructability, construction period, and maintenance. Therefore, in this study, tunnel behavior and stability of rock pillar according to the pillar width and cover depth for parallel tunnels are investigated by performing FE analysis and using empirical formula. According to the results, Rock pillar is reinforced for distributed vertical load by Tie-Bolt due to unpredicted ground deformation, and the reinforced rock pillar's behaviour from the FE analysis shows a quite good agreement with field measurement. According to ground conditions, if the pillar width of the parallel tunnels is reduced, it can be more efficient in use of the tunnel space compared to previous tunnels.

Finite element analysis of welding process by parallel computation (병렬 처리를 이용한 용접 공정 유한 요소 해석)

  • 임세영;김주완;최강혁;임재혁
    • Proceedings of the KWS Conference
    • /
    • 2003.11a
    • /
    • pp.156-158
    • /
    • 2003
  • An implicit finite element implementation for Leblond's transformation plasticity constitutive equations, which are widely used in welded steel structure is proposed in the framework of parallel computing. The implementation is based upon the multiplicative decomposition of deformation gradient and hyper elastic formulation. We examine the efficiency of parallel computation for the finite element analysis of a welded structure using domain-wise multi-frontal solver.

  • PDF

Three dimensional finite element analysis of art-welding processor via parallel compuating (아크 용접 공정의 3차원 병렬처리 유한 요소 해석)

  • 임세영;김주완;김현규;조영삼
    • Proceedings of the KWS Conference
    • /
    • 2002.05a
    • /
    • pp.161-163
    • /
    • 2002
  • An implicit finite element implementation for Leblond's transformation plasticity constitutive equations, which are widely used in welded steel structure is proposed in the framework of parallel computing. The implementation is based upon the updated Lagrangian formulation. We examine the efficiency of parallel compuatation for the finite element analysis of a welded structure using multi-frontal solver.

  • PDF