• Title/Summary/Keyword: 변환기반 학습

Search Result 418, Processing Time 0.023 seconds

Image Generation from Korean Dialogue Text via Prompt-based Few-shot Learning (프롬프트 기반 퓨샷 러닝을 통한 한국어 대화형 텍스트 기반 이미지 생성)

  • Eunchan Lee;Sangtae Ahn
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.447-451
    • /
    • 2022
  • 본 논문에서는 사용자가 대화 텍스트 방식의 입력을 주었을 때 이를 키워드 중심으로 변환하여 이미지를 생성해내는 방식을 제안한다. 대화 텍스트란 채팅 등에서 주로 사용하는 형식의 구어체를 말하며 이러한 텍스트 형식은 텍스트 기반 이미지 생성 모델이 적절한 아웃풋 이미지를 생성하기 어렵게 만든다. 이를 해결하기 위해 대화 텍스트를 키워드 중심 텍스트로 바꾸어 텍스트 기반 이미지 생성 모델의 입력으로 변환하는 과정이 이미지 생성의 질을 높이는 좋은 방안이 될 수 있는데 이러한 태스크에 적합한 학습 데이터는 충분하지 않다. 본 논문에서는 이러한 문제를 다루기 위한 하나의 방안으로 사전학습된 초대형 언어모델인 KoGPT 모델을 활용하며, 퓨샷 러닝을 통해 적은 양의 직접 제작한 데이터만을 학습시켜 대화 텍스트 기반의 이미지 생성을 구현하는 방법을 제안한다.

  • PDF

Attention-based Unsupervised Style Transfer by Noising Input Sentences (입력 문장 Noising과 Attention 기반 비교사 한국어 문체 변환)

  • Noh, Hyungjong;Lee, Yeonsoo
    • Annual Conference on Human and Language Technology
    • /
    • 2018.10a
    • /
    • pp.434-439
    • /
    • 2018
  • 문체 변환 시스템을 학습하는 데 있어서 가장 큰 어려움 중 하나는 병렬 말뭉치가 부족하다는 것이다. 최근 대량의 비병렬 말뭉치만으로 문체 변환 문제를 해결하려는 많은 연구들이 발표되었지만, 아직까지도 원 문장의 정보 보존(Content preservation)과 문체 변환(Style transfer) 모두를 이루는 것이 쉽지 않은 상태이다. 특히 비교사 학습의 특성상 문체 변환과 동시에 정보를 보존하는 것이 매우 어렵다. Attention 기반의 Seq2seq 네트워크를 이용할 경우에는 과도하게 원문의 정보가 보존되어 문체 변환 능력이 떨어지기도 한다. 그리고 OOV(Out-Of-Vocabulary) 문제 또한 존재한다. 본 논문에서는 Attention 기반의 Seq2seq 네트워크를 이용하여 어절 단위의 정보 보존력을 최대한 높이면서도, 입력 문장에 효과적으로 Noise를 넣어 문체 변환 성능을 저해하는 과도한 정보 보존 현상을 막고 문체의 특성을 나타내는 어절들이 잘 변환되도록 할 뿐 아니라 OOV 문제도 줄일 수 있는 방법을 제안한다. 우리는 비교 실험을 통해 본 논문에서 제안한 방법들이 한국어 문장뿐 아니라 영어 문장에 대해서도 state-of-the-art 시스템들에 비해 향상된 성능을 보여준다는 사실을 확인하였다.

  • PDF

Gradient Leakage Defense Strategy based on Discrete Cosine Transform (이산 코사인 변환 기반 Gradient Leakage 방어 기법)

  • Park, Jae-hun;Kim, Kwang-su
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.2-4
    • /
    • 2021
  • In a distributed machine learning system, sharing gradients was considered safe because it did not share original training data. However, recent studies found that malicious attacker could completely restore the original training data from shared gradients. Gradient Leakage Attack is a technique that restoring original training data by exploiting theses vulnerability. In this study, we present the image transformation method based on Discrete Cosine Transform to defend against the Gradient Leakage Attack on the federated learning setting, which training in local devices and sharing gradients to the server. Experiment shows that our image transformation method cannot be completely restored the original data from Gradient Leakage Attack.

  • PDF

Text Style Transfer of Non-parallel Data using Transformer and Discriminator (트랜스포머와 판별기를 이용한 비병렬 데이터의 텍스트 스타일 변환)

  • Park, Da-Sol;Cha, Jeong-Won
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.64-68
    • /
    • 2020
  • 텍스트 스타일 변환은 문장 내 컨텐츠는 유지하면서 문장의 스타일을 변경하는 것이다. 스타일의 정의가 모호하기 때문에 텍스트 스타일 변환에 대한 연구는 대부분 지도 학습으로 진행되어왔다. 본 논문에서는 병렬 데이터 구축이 되지 않은 데이터를 학습하기 위해 비병렬 데이터를 이용하여 스타일 변환을 시도한다. 트랜스포머 기반의 문장 생성기를 이용하여 문장을 생성하고, 해당 스타일을 분류하는 판별기로 이루어진 모델을 제안한다. 제안 모델을 통해, 감정 변환의 성능은 정확도(Accuracy) 56.9%, self-BLEU 0.393(긍정→부정), 0.366(부정→긍정), 유창성(fluency) 798.23(긍정→부정), 1381.05(부정→긍정)을 보였다. 본 연구는 비병렬 데이터에 대해 스타일 변환을 적용함으로써, 병렬 데이터가 없는 다양한 도메인에도 적용가능 할 것이다.

  • PDF

Methods of Transforming the Sejong Treebank to Improve Parser Performance (구문 분석기 성능 향상을 위한 세종 트리뱅크 변환 방법)

  • Choi, Dong-Hyun;Park, J.Y.;Lim, K.T.;Hahm, Y.G.;Choi, K.S.
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06b
    • /
    • pp.342-344
    • /
    • 2012
  • 세종 트리뱅크는 현존하는 한국어 트리뱅크 중 비교적 최근에 구축되었고 그 규모가 가장 큰 자원이다. 세종 트리뱅크는 어절을 기반으로 구축되어 있어, 어절의 개념이 없는 영어를 기반으로 연구 개발된 대다수의 구문분석기를 학습하는 데 이용될 경우 모호성이 발생된다. 본 논문에서는 세종 트리뱅크를 변환하여 학습 시 모호성을 줄이고, 이를 통해 학습된 구문 분석기의 성능을 높이는 방법에 대하여 서술한다. 실험 결과에 따르면 본 논문에서 제시된 변환 결과를 통해 최소 2 %에서 최대 4 % 정도의 성능 향상 효과를 얻을 수 있었다.

Development of an Authoring Tool Based on Components (컴포넌트 기반 저작도구의 개발)

  • 송태옥
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2001.06a
    • /
    • pp.382-385
    • /
    • 2001
  • 학습에 있어서 게임 요소의 도입은 학습동기 유발의 측면에서 긍정적인 평가를 받고 있다. 본 연구에서는 이러한 학습컨텐츠 개발에 있어서 중복적인 개발 노력을 배제하여 경제적·시간적 효율성을 높일 수 있는 컴포넌트들과 저작도구를 개발하였다. 이 컴포넌트들은 게임 제작에 필요한 기능을 캡슐화하여 제공하고 있으므로 이용하기 편리하고 학습 컨텐츠를 적은 노력으로 손쉽게 개발할 수 있다. 또한 컴포넌트가 조립된 학습도구는 ActiveX 컨트롤로 변환되므로 네트웍 기반 학습에도 이용될 수 있으며, 일반적인 어플리케이션에도 이용될 수 있다. 이 컴포넌트들을 이용한 개발의 예로서 역할놀이용 시뮬레이터를 제작하였다.

  • PDF

Automatic Generation of Custom Advertisement Messages based on Literacy Styles of Classified Personality Types (성격유형별 문체 특성 기반 맞춤형 광고 메시지 자동생성 연구)

  • Jimin Seong;Yunjong Choi;Doyeon Kwak;Hansaem Kim
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.431-436
    • /
    • 2022
  • 이 연구는 MBTI의 심리 기능지표 조합인 ST, SF, NT, NF의 유형별 특징을 반영한 마케팅 문체 프레임워크를 정의하고 모델 학습을 통해 성격유형별 맞춤화 된 광고 메시지로 생성하는 것을 목적으로 한다. 활용되는 광고 메시지 자동 생성 기술은 BART 모델에 성격유형을 Prefix로 포함한 광고문을 학습시켜 성격유형에 따라 맞춤형 광고 메시지를 생성하는 방식이다. 학습된 모델은 Prefix 조작만으로 MBTI 성격유형별 문체 특징을 갖춘 광고 메시지로 변환되는 것을 실험을 통해 확인할 수 있었다. 본 연구는 성격유형의 특징을 문체 프레임워크로써 정의하고 이에 기반한 모델 학습을 통해 성격유형별 특징을 반영한 광고 메시지를 재현해 낼 수 있다는 점에서 의의가 있다. 또한 성격유형과 연관 feature를 함께 학습하여 유형별 문체 특징과 소구점을 포함한 광고 메시지를 생성했다는 기술적 가치가 있다. 이 연구 결과를 기반으로 차후 타겟 고객층의 성격유형과 광고 도메인을 고려한 효과적인 광고 콘텐츠를 생성해 내는 모델을 개발하여 타겟 마케팅 분야는 물론이고 지역별 또는 언어별 문체 간 차이를 구조화하거나 재현해야 하는 문제에서 기반이 되는 연구로 활용될 수 있을 것으로 기대된다.

  • PDF

Image Classification Method Using Learning (학습을 이용한 영상 분류 방법)

  • Shin, Seong-Yoon;Lee, Hyun-Chang;Shin, Kwang-Seong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.01a
    • /
    • pp.285-286
    • /
    • 2021
  • 본 논문에서는 변환 학습을 기반으로 한 다중 클래스 이미지 장면 분류 방법을 제안하도록 한다. ImageNet 대형 이미지 데이터 세트에서 사전 훈련 된 네트워크 모델을 사용하여 다중 클래스의 자연 장면 이미지를 분류하였다. 실험에서 최적화 된 ResNet 모델은 Kaggle의 Intel Image Classification 데이터 세트에 분류되어 우수한 결과를 얻었다.

  • PDF

Denoising ISTA-Net: learning based compressive sensing with reinforced non-linearity for side scan sonar image denoising (Denoising ISTA-Net: 측면주사 소나 영상 잡음제거를 위한 강화된 비선형성 학습 기반 압축 센싱)

  • Lee, Bokyeung;Ku, Bonwha;Kim, Wan-Jin;Kim, Seongil;Ko, Hanseok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.4
    • /
    • pp.246-254
    • /
    • 2020
  • In this paper, we propose a learning based compressive sensing algorithm for the purpose of side scan sonar image denoising. The proposed method is based on Iterative Shrinkage and Thresholding Algorithm (ISTA) framework and incorporates a powerful strategy that reinforces the non-linearity of deep learning network for improved performance. The proposed method consists of three essential modules. The first module consists of a non-linear transform for input and initialization while the second module contains the ISTA block that maps the input features to sparse space and performs inverse transform. The third module is to transform from non-linear feature space to pixel space. Superiority in noise removal and memory efficiency of the proposed method is verified through various experiments.

Color Transformation of Images based on Emotion Using Interactive Genetic Algorithm (대화형 유전자 알고리즘을 이용한 감정 기반 영상의 색변환)

  • Woo, Hye-Yoon;Kang, Hang-Bong
    • The KIPS Transactions:PartB
    • /
    • v.17B no.2
    • /
    • pp.169-176
    • /
    • 2010
  • This paper proposes color transformation of images based on user's preference. Traditional color transformation method transforms only hue based on existing templates that define range of harmonious hue. It does not change saturation and intensity. Users would appreciate the resulting images that adjusted unnatural hue of images. Since color is closely related to peoples' emotion, we can enhance interaction of emotion-based contents and technologies. Therefore, in this paper, we define the range of color of each emotion for the transformation of color and perform the transformation of hue, saturation and intensity. However, the relationship of color and emotion depends on the culture and environment. To reflect these characteristics in color transformation, we propose the transformation of color that is based on user's preference and as a result, people would be more satisfied. We adopt interactive genetic algorithm to learn about user's preference. We surveyed the subject to analyze user's satisfaction about transformed images that are based on preference, and we found that people prefer transformed images to original images. Therefore, we conclude that people are more satisfied with the transformation of the templates which reflected user's preference than the one that did not.