• Title/Summary/Keyword: 변형층

Search Result 917, Processing Time 0.026 seconds

Analysis of the Nonlinear Staged Construction in Tall Buildings Considering the Creep and Shrinkage (Creep과 Shrinkage를 고려한 초고층구조물 비선형 시공단계 해석)

  • Park, Tae-Jun;Park, Hak-Kil
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.742-745
    • /
    • 2010
  • 본 논문은 초고층구조물의 해석방법으로 탄성변형과 아울러 시간의존성을 가진 크리프와 건조수축에 의한 비탄성변형을 고려한 비선형 시공단계 해석법을 제시한다. 기존의 초고층구조물 해석에서 주로 행하는 기둥 축소량 해석은 실무자의 경험과 프로그램을 통한 간략화에 맞추어져 있다. 이는 실제 시공 시 발생하는 구조해석 요소들을 충분히 반영하지 못하여 계산 값과 실제 값 사이에 오차가 발생된다. 비선형 시공단계 해석은 실제 시공 때 발생되는 해석변수들을 고려한 단계별 해석의 수행이 가능하며, 시간의 의존성을 가진 creep과 shrinkage의 효과를 함께 고려하여 일괄해석의 문제점을 구조해석 단계에서 실제상황에 가까운 해석을 가능하게 할 수 있다. 이를 위해 시공단계해석이 가능한 범용 프로그램을 이용한 50층 규모의 3차원 골조 프레임 모델 예제 해석을 통하여 기존 해석법들과의 비교, 분석으로 시간의 의존성을 고려한 시공단계해석의 필요성을 제시한다. 본 논문에는 범용프로그램인 SAP2000(ver.14)와 CEB-FIP모델 코드를 사용 하였다.

  • PDF

Development of Grinding/Polishing Process for Microstructure Observation of Copper melted Beads (구리 용융흔 미세조직 관측을 위한 연마/미세연마 프로세스 개발)

  • Park, Jin-Young;Bang, Sun-Bae
    • Fire Science and Engineering
    • /
    • v.32 no.6
    • /
    • pp.108-116
    • /
    • 2018
  • A melted bead microstructure can be divided into a deformed and undeformed layer. Measurement errors occur in the presence of a deformed layer, which should be removed through grinding/polishing whilst preserving the original structure. This paper proposes a grinding/polishing process to analyze the microstructure of copper melted beads. For the removal of the deformed layer, the correlation between the abrasive type/size, the polishing time and polishing rate was analyzed and the thickness of the deformed layer was less than $1{\mu}m$. The results suggest a new grinding/polishing procedure: silicon carbide abrasive $15{\mu}m$ (SiC P1200) 2 min, and $10{\mu}m$ (SiC P2400) 1 min; and diamond abrasive $6{\mu}m$ 8 min, $3{\mu}m$ 6 min, $1{\mu}m$ 10 min, and $0.25{\mu}m$ 8 min. In addition, a method of increasing the sharpness of the microstructure by chemical polishing with $0.04{\mu}m$ colloidal silica for 3 min at the final stage is also proposed. The overall grinding/polishing time is 38 min, which is shorter than that of the conventional procedure.

A Seismic Behavior of a 3-dimensional Irregular Setback Structure (3차원 비정형 Setback 구조물의 지진 거동)

  • 문성권
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.1
    • /
    • pp.105-113
    • /
    • 2000
  • Seismic behavior of 3-dimensional setback structures showing abrupt reductions of the floor size within the structure height and the effect of in-plane deformations of floor slabs on the seismic behavior of those structures are investigated. To find out general seismic behavior of 3-dimensional setback structures two parameters, level of setback(L/sub s/) and degree of setback(R/sub s/) are used. Analysis results obtained from forty eight setback structures show that a sudden change in story shear near setback level is occurred for irregular setback structures. The effect of in-plane deformation of floor slabs on the seismic behavior of setback structures is greatly influenced by the arrangement of lateral load resisting elements and it is more pronounced for frame-shear wall system showing large difference in stiffness among the lateral load resisting elements. The in-plane deformation of floor slabs results in reduced base shear, especially for FW-type structures with L/sub s/=1.0. Also, it brings about reduced story shear for the lateral load resisting element with shear wall and increase in story shear lot the lateral load resisting element without shear wall. The in-plane deformation of floor slabs at the base portion and/or tower portion due to difference in stiffness among the lateral load resisting elements brings about increment of floor displacements at all floor level.

  • PDF

Calculation of Consolidation Period for Dredged Clay by Strain Theory (변형률 이론에 의한 준설점토의 압밀기간 산정)

  • Cheong Gyu Hyang;Won Yong Beom;Lee Myung Ho;Koo Bon Soo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.17 no.1
    • /
    • pp.16-20
    • /
    • 2005
  • Consolidation of dredged fill has become important task for site treatment. The variation of stratum thickness during consolidation processing needs to be taken into consideration since hydraulic fill would go through a much larger scale strain than land soil when it is subject to a load. In this study, the consolidation period considering the variation of stratum thickness was analyzed and compared the results with those of existing consolidation studies which did not consider the variation of stratum thickness. According to the results of the study, the consolidation period of the ground with a larger strain was calculated more close to observed value in case of Mikasa theory which takes the variation of stratum thickness into consideration.

Strip Angle Changes in Accordance with the Deformation Mode of Seismic Steel Plate Shear Wall Systems (내진 강판전단벽시스템의 변형모드에 따른 스트립앵글 변화)

  • Lee, Kangmin;Li, Rui;Chen, Liuyi;Oh, Keun Yeong;Kim, Woo Seok
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.5
    • /
    • pp.497-507
    • /
    • 2013
  • This study investigated the tension-field action induced strip angle changes and deformed mode shapes of SPSW for high-rise structures subjected to lateral forces. Based on the numerical analysis 3, 9, 14 and 20 story structures, shear and flexural modes were identified by comparing the numerical analysis results to the predicted strength by theory. Shear deformation mode exhibited a constant angle in tension-field; whereas, flexural mode of the numerical results, differed from the tension-field action theory.

Deformation and Fracture Analysis of Honeycomb Sandwich Composites under Bending Loading (굽힘 하중을 받는 하니컴 샌드위치 복합재료의 변형 및 파괴 해석)

  • Kim Hyoung-Gu;Choi Nak-Sam
    • Composites Research
    • /
    • v.18 no.1
    • /
    • pp.30-37
    • /
    • 2005
  • The bending strength characteristics and local deformation behaviors of honeycomb sandwich composites were investigated using three-point bending experiment and finite element simulation with a real model of honeycomb core. Two kinds of cell sizes of honeycomb core, two kinds of skin layer thicknesses, perfect bonding specimen as well as initial delamination specimen were used for analysis of stress and deformation behaviors of honeycomb sandwich beams. Various failure modes such as skin layer yielding, interfacial delamination, core shear deformation and local buckling were considered. Its simulation results were very comparable to the experimental ones. Consequently, cell size of honeycomb core and skin layer thickness had dominant effects on the bending strength and deformation behaviors of honeycomb sandwich composites. Specimens of large core cell size and thin skin layer showed that bending strength decreased by $30\~68\%$.

Optical Phonons in AlGaAs/GaAs Multiple Quantum Well Structures

  • Kim, Jin-Heung;No, Hui-Seok;Choe, Won-Jun;Song, Jin-Dong;Im, Jun-Yeong;Park, Seong-Jun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.289-289
    • /
    • 2012
  • Molecular beam epitaxy 방법으로 성장시킨 AlGaAs/GaAs 다중 양자 우물 구조에 대한 라만 산란 연구를 보고한다. InAs 양자점이 성장된 Si 기판 위에 각기 다른 온도에서 두께 약 1 ${\mu}m$의 GaAs 층을 두 단계로 성장시킨 후 그 위에 AlGaAs/GaAs 다중 양자 우물 구조를 성장시켰다. AlGaAs/GaAs 다중 양자 우물 구조의 광학적 특성에 영향을 주는 GaAs 층의 변형력(stress)의 변화를 알기 위해서 시료의 측면으로부터 공간 분해된 라만 산란 실험을 수행하였다. 라만 산란 실험으로부터 AlGaAs/GaAs 다중 양자 우물 구조가 지니는 모든 종류의 광학 포논을 관측하였으며, 두 단계로 성장시킨 GaAs 층에서의 변형력이 Si 기판으로부터 멀어질수록 성장조건의 변화에 따라서 다르게 전개된다는 것을 파악하였다.

  • PDF

Model for fiber Cross-Sectional Analysis of FRP Concrete Members Based on the Constitutive Law in Multi-Axial Stress States (다축응력상태의 구성관계에 기초한 FRP 콘크리트 부재의 층분할 단면해석모델)

  • 조창근;김영상;배수호;김환석
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.6
    • /
    • pp.892-899
    • /
    • 2002
  • Among the methods for enhancement of load-carrying capacity on flexural concrete member, recently, a concept is being investigated which replaces the steel in a conventional reinforced concrete member with a fiber reinforced polymer(FRP) shell. This study focuses on modeling of the structural behavior of concrete surrounded with FRP shells in flexural bending members. A numerical model of fiber cross-sectional analysis is proposed to predict the stress and deformation state of the FRP shell and concrete. The stress-strain relationship of concrete confined by a FRP shell is formulated to be based on the constitutive law of concrete in multi-axial compressive stress state, in assuming that the compression response is dependent on the radial expansion of the concrete. To describe the FRP shell behavior, equivalent orthotropic properties of in-plane behavior from classical lamination theory are used. The present model is validated to compare with the experiments of 4-point bending tests of FRP shell concrete beam, and has well predicted the moment-curvature relationships of the members, axial and hoop strains in the section, and the enhancement of confinement effect in concrete surrounded by FRP shell.

Stretchable Deformation-Resistance Characteristics of Metal Thin Films for Stretchable Interconnect Applications I. Effects of a Parylene F Intermediate Layer and PDMS Substrate Swelling (신축 전자패키지 배선용 금속박막의 신축변형-저항 특성 I. Parylene F 중간층 및 PDMS 기판의 Swelling에 의한 영향)

  • Park, Donghyun;Oh, Tae Sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.3
    • /
    • pp.27-34
    • /
    • 2017
  • We investigated the feasibility of parylene F usage as an intermediate layer between a polydimethylsiloxane (PDMS) substrate and an Au thin-film interconnect as well as the swelling effect of PDMS substrate on the stretchable deformability of an Au thin film. The 150-nm-thick Au film, which was sputtered on a PDMS substrate without a parylene F layer, exhibited an initial resistance of $11.7{\Omega}$ and an overflow of its resistance at a tensile strain of 12.5%. On the other hand, the Au film, which was formed with a 150-nm-thick parylene F layer, revealed an much improved resistance characteristics: $1.21{\Omega}$ as its initial resistance and $246{\Omega}$ at its 30% elongation state. With swelling of PDMS substrate, the resistance of an Au film substantially decreased to $14.4{\Omega}$ at 30% tensile strain.

Design of thermal inkjet print head with robust and reliable structure (크렉 방지를 위한 잉크젯 프린트 헤드 강건 설계)

  • Kim, Sang-Hyun
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.2
    • /
    • pp.337-342
    • /
    • 2022
  • Although printing technology has recently been widely used in IT fields including displays and fuel cells, residual and thermal stress are generated by a manufacturing process of stacking the layers of the print head and result in the substrate deformation and nozzle plate crack, which may cause ink leaks or not be ejected onto a desired region. Therefore, in this paper, we propose a new design of thermal inkjet print head with a robust and reliable structure. Diverse types of inkjet print head such as a rib, pillar, support wall and individual feed hole are designed to reduce the deformation of the substrate and nozzle plate, and their feasibility is numerically investigated through FEA analysis. The numerical results show that the maximum stress and deformation of proposed print head dramatically drops to at least 40~50%, and it is confirmed that there is no nozzle plate cracks and ink leakage through the fabrication of pillar and support wall typed print head. Therefore, it is expected that the proposed head shape can be applied not only to ink ejection in the normal direction, but also to large-area printing technology.