• Title/Summary/Keyword: 변형된 영상 생성 모델

Search Result 48, Processing Time 0.026 seconds

Road Extraction from High Resolution Satellite Image Using Object-based Road Model (객체기반 도로모델을 이용한 고해상도 위성영상에서의 도로 추출)

  • Byun, Young-Gi;Han, You-Kyung;Chae, Tae-Byeong
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.4
    • /
    • pp.421-433
    • /
    • 2011
  • The importance of acquisition of road information has recently been increased with a rapid growth of spatial-related services such as urban information system and location based service. This paper proposes an automatic road extraction method using object-based approach which was issued alternative of pixel-based method recently. Firstly, the spatial objects were created by MSRS(Modified Seeded Region Growing) method, and then the key road objects were extracted by using properties of objects such as their shape feature information and adjacency. The omitted road objects were also traced considering spatial correlation between extracted road and their neighboring objects. In the end, the final road region was extracted by connecting discontinuous road sections and improving road surfaces through their geometric properties. To assess the proposed method, quantitative analysis was carried out. From the experiments, the proposed method generally showed high road detection accuracy and had a great potential for the road extraction from high resolution satellite images.

Development of dataset amplification software (학습데이터 증폭 소프트웨어 개발)

  • Seo, Kyeong-Deok;Koh, Seok-Joo;Shin, Jae-Won;Park, Hyung-Seok;Joe, Seong-Yoon;Kim, Kyeong-Rae
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.07a
    • /
    • pp.664-666
    • /
    • 2020
  • 데이터의 다양성은 학습에 따른 모델의 성능을 좌지우지하는 중요한 요소이다. 그렇기 때문에 많은 양의 데이터를 확보하는 것은 학습에 있어서 아주 중요하다. 하지만, 데이터를 수집하는 것은 시간과 비용이 많이 드는 단계 중 하나이다. 본 논문에서는 제한된 데이터를 가지고 이미지 처리를 거쳐 대량의 데이터로 증폭시켜 많은 양의 데이터를 확보하는 과정에 대해 제안한다. 가지고 있는 YOLOv4용 학습 데이터 셋을 활용하여 사용자로부터 입력받은 확대/축소 비율, 각도로 데이터를 변형하고, 이렇게 추가로 생성된 데이터 셋을 기존 학습 데이터 셋에 재포함시키는 소프트웨어를 개발하는 것을 목표로 한다. 구현된 소프트웨어로 증폭된 대량의 데이터 셋을 다시 원본 학습 데이터 셋에 추가하고, 같은 영상에 대해서 원본 데이터 셋만 학습시킨 경우의 객체 검출 결과와 증폭된 학습 데이터 셋이 포함된 데이터 셋의 경우의 객체 검출 결과를 비교하여 그 성능을 검증하고 분석하도록 한다.

  • PDF

3D Facial Animation with Head Motion Estimation and Facial Expression Cloning (얼굴 모션 추정과 표정 복제에 의한 3차원 얼굴 애니메이션)

  • Kwon, Oh-Ryun;Chun, Jun-Chul
    • The KIPS Transactions:PartB
    • /
    • v.14B no.4
    • /
    • pp.311-320
    • /
    • 2007
  • This paper presents vision-based 3D facial expression animation technique and system which provide the robust 3D head pose estimation and real-time facial expression control. Many researches of 3D face animation have been done for the facial expression control itself rather than focusing on 3D head motion tracking. However, the head motion tracking is one of critical issues to be solved for developing realistic facial animation. In this research, we developed an integrated animation system that includes 3D head motion tracking and facial expression control at the same time. The proposed system consists of three major phases: face detection, 3D head motion tracking, and facial expression control. For face detection, with the non-parametric HT skin color model and template matching, we can detect the facial region efficiently from video frame. For 3D head motion tracking, we exploit the cylindrical head model that is projected to the initial head motion template. Given an initial reference template of the face image and the corresponding head motion, the cylindrical head model is created and the foil head motion is traced based on the optical flow method. For the facial expression cloning we utilize the feature-based method, The major facial feature points are detected by the geometry of information of the face with template matching and traced by optical flow. Since the locations of varying feature points are composed of head motion and facial expression information, the animation parameters which describe the variation of the facial features are acquired from geometrically transformed frontal head pose image. Finally, the facial expression cloning is done by two fitting process. The control points of the 3D model are varied applying the animation parameters to the face model, and the non-feature points around the control points are changed by use of Radial Basis Function(RBF). From the experiment, we can prove that the developed vision-based animation system can create realistic facial animation with robust head pose estimation and facial variation from input video image.

A Research on Applicability of Drone Photogrammetry for Dam Safety Inspection (드론 Photogrammetry 기반 댐 시설물 안전점검 적용성 연구)

  • DongSoon Park;Jin-Il Yu;Hojun You
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.5
    • /
    • pp.30-39
    • /
    • 2023
  • Large dams, which are critical infrastructures for disaster prevention, are exposed to various risks such as aging, floods, and earthquakes. Better dam safety inspection and diagnosis using digital transformation technologies are needed. Traditional visual inspection methods by human inspectors have several limitations, including many inaccessible areas, danger of working at heights, and know-how based subjective inspections. In this study, drone photogrammetry was performed on two large dams to evaluate the applicability of digital data-based dam safety inspection and propose a data management methodology for continuous use. High-quality 3D digital models with GSD (ground sampling distance) within 2.5 cm/pixel were generated by flat double grid missions and manual photography methods, despite reservoir water surface and electromagnetic interferences, and severe altitude differences ranging from 42 m to 99.9 m of dam heights. Geometry profiles of the as-built conditions were easily extracted from the generated 3D mesh models, orthomosaic images, and digital surface models. The effectiveness of monitoring dam deformation by photogrammetry was confirmed. Cracks and deterioration of dam concrete structures, such as spillways and intake towers, were detected and visualized efficiently using the digital 3D models. This can be used for safe inspection of inaccessible areas and avoiding risky tasks at heights. Furthermore, a methodology for mapping the inspection result onto the 3D digital model and structuring a relational database for managing deterioration information history was proposed. As a result of measuring the labor and time required for safety inspection at the SYG Dam spillway, the drone photogrammetry method was found to have a 48% productivity improvement effect compared to the conventional manpower visual inspection method. The drone photogrammetry-based dam safety inspection is considered very effective in improving work productivity and data reliability.

CGS System based on Three-Dimensional Character Modeling I (Part1:About Non-Digital Process) (3차원 캐릭터 모델기반 CGS System 구축 I (Part1:Non-Digital Process에 관하여))

  • Cho, Dong-Min
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.11
    • /
    • pp.1592-1600
    • /
    • 2008
  • This study is to help creative idea generation based on the theory of the 'reconstruction of character shape image elements', and aims to extrusion of creative and diverse shapes with combination of image elements upon computing creative image generation. In order to suggest the design generation methodology for the maximization of idea generation ability and to overcome restriction of thinking out of existing idea generation methodology, it has suggested the CGS(Character Generation System) that is a creative idea generation methodology identified and complemented the problem of the existing computerized idea generation(PDS with Proportion) method out of the preceded studies on the creative idea generation methodologies. this study is expected to have effectives as one method for idea generation or creative image generation assistance during the 3D character development process, and to serve as an assistance to overcome the restriction of the character shape image generation through diverse idea generations.

  • PDF

Vehicle Crash Simulation using Trajectory Optimization (경로 최적화 알고리즘을 이용한 3차원 차량 충돌 시뮬레이션)

  • Seong, Jin-Wook;Ko, Seung-Wook;Kwon, Tae-Soo
    • Journal of the Korea Computer Graphics Society
    • /
    • v.21 no.5
    • /
    • pp.11-19
    • /
    • 2015
  • Our research introduces a novel system for creating 3D vehicle animation. Our system is for intuitively authoring vehicle accident scenes according to videos or based on user-drawn trajectories. Our system has been implemented by combining three existing ideas. The first part is for obtaining 3D trajectory of a vehicle from black-box videos. The second part is a tracking algorithm that controls a vehicle to follow a given trajectory with small errors. The last part optimizes the vehicle control parameters so that the error between the input trajectory and simulated vehicle trajectory is minimized. We also simulate the deformation of the car due to an impact to achieve believable results in real-time.

Structural and Dynamic Analysis of a Unmanned Cargo Multicopter Using Hybrid Power System (하이브리드 추진 시스템을 이용한 수송용 멀티콥터 무인기의 구조 및 동특성 해석)

  • Kee, Youngjung;Kim, Taekyun
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.5
    • /
    • pp.78-85
    • /
    • 2022
  • Multicopter-type unmanned aerial vehicles (UAV) are increasingly for cargo transportation to mountainous and island regions, image information acquisition in disaster areas, and emergency rescue transport. In order to successfully perform these tasks, the aircraft structure must be able to safely support the loads induced by flight conditions while ensuring the vibration and aeroelastic stability of the prop-rotor. This study introduced a structural analysis model of a 40kg payload multicopter with an engine-generator hybrid power system. The deformation and stress distribution are investigated depending on the load conditions. In addition, the vibration characteristics and aeroelastic stability of the prop-rotor were also presented to flight speed and aircraft pitch angle. The maximum thrust generated by the prop-rotor and the landing load applied to the multicopter under normal and emergency landing conditions were reviewed., It confirmed that the structure could support without failure. In addition, it confirmed that the damping characteristics of each primary locate in the constant region according to the aircraft's flight speed and the prop-rotors rotating speed.

Improvement of Underground Cavity and Structure Detection Performance Through Machine Learning-based Diffraction Separation of GPR Data (기계학습 기반 회절파 분리 적용을 통한 GPR 탐사 자료의 도로 하부 공동 및 구조물 탐지 성능 향상)

  • Sooyoon Kim;Joongmoo Byun
    • Geophysics and Geophysical Exploration
    • /
    • v.26 no.4
    • /
    • pp.171-184
    • /
    • 2023
  • Machine learning (ML)-based cavity detection using a large amount of survey data obtained from vehicle-mounted ground penetrating radar (GPR) has been actively studied to identify underground cavities. However, only simple image processing techniques have been used for preprocessing the ML input, and many conventional seismic and GPR data processing techniques, which have been used for decades, have not been fully exploited. In this study, based on the idea that a cavity can be identified using diffraction, we applied ML-based diffraction separation to GPR data to increase the accuracy of cavity detection using the YOLO v5 model. The original ML-based seismic diffraction separation technique was modified, and the separated diffraction image was used as the input to train the cavity detection model. The performance of the proposed method was verified using public GPR data released by the Seoul Metropolitan Government. Underground cavities and objects were more accurately detected using separated diffraction images. In the future, the proposed method can be useful in various fields in which GPR surveys are used.