• Title/Summary/Keyword: 변조기

Search Result 1,319, Processing Time 0.026 seconds

Analysis and Design of High Efficiency Feedforward Amplifier Using Distributed Element Negative Group Delay Circuit (분산 소자 형태의 마이너스 군지연 회로를 이용한 고효율 피드포워드 증폭기의 분석 및 설계)

  • Choi, Heung-Jae;Kim, Young-Gyu;Shim, Sung-Un;Jeong, Yong-Chae;Kim, Chul-Dong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.6
    • /
    • pp.681-689
    • /
    • 2010
  • We will demonstrate a novel topology for the feedforward amplifier. This amplifier does not use a delay element thus providing an efficiency enhancement and a size reduction by employing a distributed element negative group delay circuit. The insertion loss of the delay element in the conventional feedforward amplifier seriously degrades the efficiency. Usually, a high power co-axial cable or a delay line filter is utilized for a low loss, but the insertion loss, cost and size of the delay element still acts as a bottleneck. The proposed negative group delay circuit removes the necessity of the delay element required for a broadband signal suppression loop. With the fabricated 2-stage distributed element negative group delay circuit with -9 ns of total group delay, a 0.2 dB of insertion loss, and a 30 MHz of bandwidth for a wideband code division multiple access downlink band, the feedforward amplifier with the proposed topology experimentally achieved a 19.4 % power added efficiency and a -53.2 dBc adjacent channel leakage ratio with a 44 dBm average output power.

Evaluation on Organ Dose and Image Quality by Changing kVp and Ion Chamber Combination while Taking Digital Chest Lateral Decubitus PA Projection (디지털 흉부 측와위 후전방향 검사 시 Ion chamber조합 설정과 관전압 변화에 따른 장기선량 및 화질 평가)

  • Lee, Jin-Soo;Park, Hyong-Hu
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.1
    • /
    • pp.316-323
    • /
    • 2015
  • In this study, we analyzed radiation dose and MTF with setting of Ion chamber and changing kVp so that we are able to suggest acquiring optimized diagnostic images and minimizing patient dose. we assumed right lateral decubitus position among chest decubitus projection and set 7 combination of Ion chamber. By changing kVp(100, 110, 120, 130kVp), we exposed x-ray five times respectively and calculated average value after measuring entrance dose. we input the entrance dose value to PCXMC Monte carlo simulation tool and calculated organ dose and effective dose. Then we did physical image evaluation with MTF for the purpose to compare image quality. As a result, the high kVp, entrance dose is reduced. As change of ion chamber, when selecting second ion chamber, both organ dose and effective dose were the lowest. In contrast, selecting first ion chamber was the highest. MTF is superior to set second Ion chamber and using 120 kVp. Consequently, when taking chest right lateral decubitus using Digital radiography, the optimized combination which have both reducing dose efficiently without declining image quality and aquring good qualified image is set 120 kVp and selecting second Ion chamber.

New SNR Estimation Algorithm using Preamble and Performance Analysis (프리앰블을 이용한 새로운 SNR 추정 알고리즘 제안 및 성능 분석)

  • Seo, Chang-Woo;Yoon, Gil-Sang;Portugal, Sherlie;Hwang, In-Tae
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.3
    • /
    • pp.6-12
    • /
    • 2011
  • The fast growing of the number of users requires the development of reliable communication systems able to provide higher data rates. In order to meet those requirements, techniques such as Multiple Input Multiple Out (MIMO) and Orthogonal Frequency Division multiplexing (OFDM) have been developed in the recent years. In order to combine the benefits of both techniques, the research activity is currently focused on MIMO-OFDM systems. In addition, for a fast wireless channel environment, the data rate and reliability can be optimized by setting the modulation and coding adaptively according to the channel conditions; and using sub-carrier frequency, and power allocation techniques. Depending on how accurate the feedback-based system obtain the channel state information (CSI) and feed it back to the transmitter without delay, the overall system performance would be poor or optimal. In this paper, we propose a Signal to Noise Ratio (SNR) estimation algorithm where the preamble is known for both sides of the transciever. Through simulations made over several channel environments, we prove that our proposed SNR estimation algorithm is more accurate compared with the traditional SNR estimation.

A Simple Bit Allocation Scheme Based on Grouped Sub-Channels for V-BLAST OFDM Systems (V-BLAST OFDM 시스템을 위한 그룹화된 부채널 기반의 간단한 형태의 비트 할당 기법)

  • Park Dae-Jin;Yang Suck-Chel;Kim Jong-Won;Yoo Myung-Sik;Lee Won-Cheol;Shin Yo-An
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.7C
    • /
    • pp.680-690
    • /
    • 2006
  • In this paper, we present a bit allocation scheme based on grouped sub-channels for MIMO-OFDM (Multiple Input Multiple Output-Orthogonal Frequency Division Multiplexing) systems using V-BLAST (Vertical-Bell laboratories LAyered Space-Time) detector. A fully adaptive modulation and coding scheme may provide optimal performance in the MIMO-OFDM systems, however it requires excessive feedback information. Instead, SBA (Simplified Bit Allocation) scheme for reduction of feedback overhead, which applies the same modulation and coding to all the good sub-channels, may be considered. The proposed scheme in this paper named SBA-GS (Simplified Bit Allocation based on Grouped Sub-channels) groups sub-channels and assigns the same modulation and coding to the set of selected sub-channel groups. Simulation results show that the proposed scheme achieves comparable bit error rate performance of the conventional SBA scheme, while significantly reducing the feedback overhead in multipath channels with small delay spreads.

Fabrication and Transmission Experiment of the Distributed Feedback Laser Diode(DFB-LD) Module for 2.5Gbps Optical Telecommunication System (2.5Gbps 광통신용 distrbuted feedback laser diode(DFB-LD) 모듈 제작 및 광송신 실험)

  • 박경현;강승구;송민규;이중기;조호성;장동훈;박찬용;김정수;김홍만
    • Korean Journal of Optics and Photonics
    • /
    • v.5 no.3
    • /
    • pp.423-430
    • /
    • 1994
  • We designed and fabricated the single mode fiber pigtailed DFB-LD module for 2.5 Gbps optical communication system. In the design of the DFB-LD module, we made the module divided into two parts of inner sub-module and outer 14-pin butterfly package and cylindrical shaped sub-module contain quasi confocal 2 lens system including optical isolator and electrical connection between these parts via hybrid substrate of bias T circuit. Laser welding was used to assemble the sub-module which requires accurate fixing between optical elements. The fabricated DFB-LD module showed optical coupling efficiency of 20% and - 3 dB small signal response of more than 2.6 GHz. We confirmed mechanical reliability of the module by temperature cycle test where the tested module exhibit optical power fluctuation of less than 10%. Finally we evaluated the performance of the fabricated DFB-LD module as light source of 2.5 Gbps optical communication system, sensitivity of - 30.2 dBm was obtained through 47 km optical fiber transmission under the criterion of $1\times10^{-10}$ BER and transmission penalties were 1.5 dB caused by extinction ratio and 1.0 dB caused by chromatic dispersion of normal single mode fiber. fiber.

  • PDF

Throughput Performance analysis of AMC based on New SNR Estimation Algorithm using Preamble (프리앰블을 이용한 새로운 SNR 추정 알고리즘 기반의 AMC 기법의 전송률 성능 분석)

  • Seo, Chang-Woo;Portugal, Sherlie;Hwang, In-Tae
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.4
    • /
    • pp.6-14
    • /
    • 2011
  • The fast growing of the number of users requires the development of reliable communication systems able to provide higher data rates. In order to meet those requirements, techniques such as Multiple Input Multiple Out (MIMO) and Orthogonal Frequency Division multiplexing (OFDM) have been developed in the recent years. In order to combine the benefits of both techniques, the research activity is currently focused on MIMO-OFDM systems. In addition, for a fast wireless channel environment, the data rate and reliability can be optimized by setting the modulation and coding adaptively according to the channel conditions; and using sub-carrier frequency, and power allocation techniques. Depending on how accurate the feedback-based system obtain the channel state information (CSI) and feed it back to the transmitter without delay, the overall system performance would be poor or optimal. In this paper, we propose a Signal to Noise Ratio (SNR) estimation algorithm where the preamble is known for both sides of the transciever. Through simulations made over several channel environments, we prove that our proposed SNR estimation algorithm is more accurate compared with the traditional SNR estimation. Also, We applied AMC on several channel environments using the parameters of IEEE 802.11n, and compared the Throughput performance when using each of the different SNR Estimation Algorithms. The results obtained in the simulation confirm that the proposed algorithm produces the highest Throughput performance.

8-VSB Remodulator for Retransmitting the Terrestrial Digital Broadcasting (지상파 디지털방송 재전송을 위한 8-VSB 재변조기)

  • Kim, Yoo-Won;Jo, Geun-Sik
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.10
    • /
    • pp.1525-1533
    • /
    • 2010
  • With the digital terrestrial television broadcasting transition, terrestrial television broadcasting have required the replacement of retransmission facilities for the analog broadcasting installed in the existing apartment, building, cable TV station, MATV system and so on. In addition, new standards have been enacted for retransmission of the digital television broadcasting in MATV system. To deal with this issue, in this paper, we propose a new 8-VSB remodulator that can retransmit signals of the terrestrial digital television broadcasting. Moreover, we present a standard and the process composition of the 8-VSB remodulator, and an experimental environment configuration for performance evaluation. To achieve this, we have implemented the 8-VSB remodulator with the sequential process components comprised of the RF signal retransmission, the TS stream modulator, the RF signal reception and demodulation. Through the simulation, we analyze the performance standard from the measured data such as spurious and phase noise. And then, we measure SNR and EVM of each attenuation step of the signal obtained by the signal processor and the 8-VSB remodulator with the same retransmission environment and conditions. Experimental results show that both the 8-VSB remodulator and the signal processor can be used as equipment for the retransmission of the terrestrial digital television broadcasting. In addition, the 8-VSB remodulator performed well to improve the transmission efficiency for the digital broadcasting signal, compare to the existing signal processor.

A Study on the Development of SSB Modem (디지털 SSB 모뎀 개발에 관한 연구)

  • Jin, Heung-Du;Choi, Jo-Cheon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.693-697
    • /
    • 2007
  • The SSB modem performs the modulation process which converts the digital voltage level to the audible frequency band signal and the demodulation process which converts reversely the audible frequency signal to the digital voltage level. The modulator and the demodulator are implemented with a single DSP chip. Because of the SSB specific character, the distortion occurs when the frequency is changed. This distortion has no effect on voice communication, but it has an significant effect on data communication. In other words, it is impossible to send data stream with adjacent 2 periods. Therefore, in case of using 2-tone FSK, it is needed to send at least 3 periods to transmit 1 bit. Therefore we implemented the modem using modified phase-delay shift keying to transmit 1 tone signal for high speed transmission. In the 1200[bps] mode, it generates 0, $187{\mu}s$ delay time at 1.3kHz symbol frequency, and in the 2400[bps] mode, 0, $70{\mu}s$, $130{\mu}s$, $200{\mu}s$ delay time at 1.5kHz symbol frequency. Finally, in the maximum 3600[bps] mode, it generates 0, $100{\mu}s$, $160{\mu}s$, $250{\mu}s$ delay time at 2.0kHz symbol frequency. The measured results of the implemented SSB modem shows a good transfer functional characteristic by spectrum analyzer, almost same bandwidth in pass band and 20dB higher SNR comparing the German PACTOR and American CLOVER and in the experimental transmitting test, we verified the transmitted data is received correctly in platform.

  • PDF

Performance Improvement of the Combined AMC-MIMO Systems with Independent MCS Level Selection Method (독립적인 MCS 레벨 선택 방식이 적용된 AMC-MIMO 결합 시스템의 성능 개선)

  • Hwang, In-Tae;Choi, Kwang-Wook;Ryoo, Sang-Jin;Lee, Kyung-Hwan;You, Cheol-Woo;Hong, Dae-Ki;Kang, Min-Goo;Kim, Cheol-Sung
    • Journal of Internet Computing and Services
    • /
    • v.8 no.1
    • /
    • pp.47-55
    • /
    • 2007
  • In this paper, we propose and observe a system that adopts Common-MCS (Modulation and Coding Scheme) level over all layer and Independent-MCS level for each layer in the combined AMC-V-BLAST (Adaptive Modulation and Coding-Vertical-Bell-lab Layered Space-Time) system. Also, comparing with the combined system using Common-MCS level, we observe throughput performance improvement in case of Independent-MCS level. As a result of simulation, Independent-MCS level case adapts modulation and coding scheme for maximum throughput to each channel condition in separate layer, resulting in improved throughput compared to Common-MCS level case. Especially, the results show that the combined AMC-V-BLAST system with Independent-MCS level achieves a gain of 700kbps in $7{\sim}9dB$ SNR (Signal-to-Noise Ratio) range against using Common-MCS level. In addition, the combined AMC-V-BLAST system using MMSEnulling method with receive diversity is verified that the difference of throughput between Independent MCS level system and common MCS level system in $7dB{\sim}9dB$ SNR is about 350kbps more or less.

  • PDF

Performance Evaluation of Underwater Acoustic Communication in Frequency Selective Shallow Water (주파수 선택적인 천해해역에서 수중음향통신 성능해석)

  • Park, Kyu-Chil;Park, Jihyun;Lee, Seung Wook;Jung, Jin Woo;Shin, Jungchae;Yoon, Jong Rak
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.2
    • /
    • pp.95-103
    • /
    • 2013
  • An underwater acoustic (UWA) communication in shallow water is strongly affected by the water surface and the seabed acoustical properties. Every reflected signal to receiver experiences a time-variant scattering in sea surface roughness and a grazing-angle-dependent reflection loss in bottom. Consequently, the performance of UWA communication systems is degraded, and high-speed digital communication is disrupted. If there is a dominant signal path such as a direct path, the received signal is modeled statistically as Rice fading but if not, it is modeled as Rayleigh fading. However, it has been known to be very difficult to reproduce the statistical estimation by real experimental evaluation in the sea. To give an insight for this scattering and grazing-angle-dependent bottom reflection loss effect in UWA communication, authors conduct experiments to quantify these effects. The image is transmitted using binary frequency shift keying (BFSK) modulation. The quality of the received image is shown to be affected by water surface scattering and grazing-angle-dependent bottom reflection loss. The analysis is based on the transmitter to receiver range and the receiver depth dependent image quality and bit error rate (BER). The results show that the received image quality is highly dependent on the transmitter-receiver range and receiver depth which characterizes the channel coherence bandwidth.