• Title/Summary/Keyword: 변위-기반 내진설계

Search Result 44, Processing Time 0.023 seconds

Seismic Performance Evaluation of SRC Composite Column using Direct Displacement Based Design Method (직접변위기반 설계법에 의한 SRC 합성기둥의 내진성능평가)

  • Jung, In-Kju;Park, Soon-Eung;Kim, Dong-Hyuk
    • Journal of Korean Association for Spatial Structures
    • /
    • v.12 no.3
    • /
    • pp.63-70
    • /
    • 2012
  • In this study, the displacement-based design concept, the performance by the existing reinforced concerte column and steel reinforced concrete composite column for SRC purchased the maximum design ground acceleration improvement compared to the performance design. SRC have several advantages such as strength enhancement and high ductility. H-beam or steel tubes were used for embedded elements of the SRC composite columns. SRC cross-section for the P-M diagram and analysis on the nominal bending monent SRC designed for composite columns for disparity estimation is presented to the displacement-based seismic design. Performance improvement of the performance-based design performance targets for the design seismic displacement and design criteria for the direct displacement-based design methods and to improve the seismic performance due to the displacement coefficient method is proposed to design. SRC compared with the RC column designed to improve the performance and displacement ductility ratio displacement results in the performance design results showed significantly improved performance.

Development of Performance-Based Seismic Design of RC Column Retrofitted By FRP Jacket using Direct Displacement-Based Design (직접변위기반설계법에 의한 철근콘크리트 기둥의 FRP 피복보강 내진성능설계법의 개발)

  • Cho, Chang-Geun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.2 s.54
    • /
    • pp.105-113
    • /
    • 2007
  • In the current research, an algorithm of performance-based seismic retrofit design of reinforced concrete columns using FRP jacket has been proposed. For exact prediction of the nonlinear flexural analysis or FRP composite RC members, multiaxial constitutive laws of concrete and composite materials have been presented. For seismic retrofit design, an algorithm of direct displacement-based design method (DDM) proposed by Chopra and Goel (2001) has been newly applied to determine the design thickness of FRP jacket in seismic retrofit of reinforced concrete columns. To compare with the displacement coefficient method (DCM), the DDM gives an accurate prediction of the target displacement in highly nonlinear region, since the DCM uses the elastic stiffness before reaching the yield load as the effective stiffness but the DDM uses the secant stiffness.

Seismic Performance Improved Design of Reinforced Concrete Columns Strengthened by Steel Jackets Using Displacement-based Design (스틸재킷 보강 철근콘크리트 기둥의 변위기반 내진 성능 개선 설계 방법)

  • Jung, In-Kju;Park, Moon-Ho;Cho, Chang-Geun
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.1
    • /
    • pp.11-18
    • /
    • 2010
  • In this study, a procedure of performance-based design for the seismic retrofit of reinforced concrete columns strengthened by steel jackets has been presented. In order to predict the target displacement of retrofitted columns, a nonlinear analysis of reinforced concrete columns retrofitted with steel jackets has been developed based on a segmental model with the fiber cross-sectional approach. The seismic displacement level of retrofitted columns is estimated both by the direct displacement-based design method and by the displacement coefficient method. In examples of seismic retrofitted columns, the current seismic retrofit procedure gives good results in improvements of displacement levels and displacement ductilities of retrofitted columns.

Evaluations of Velocity Response Spectrum of Seismic Base and Response Displacement for the Seismic Design of Underground Structures (지중구조물 내진설계를 위한 기반면의 속도 응답스펙트럼 및 응답변위 산정기법에 대한 연구)

  • 윤종구;김동수;유제남
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.4
    • /
    • pp.211-221
    • /
    • 2003
  • The response displacement method is the most frequently used method for seismic design of underground structures. This method is pseudo-static method, and the evaluations of velocity response spectrum of seismic base and response displacement of surrounding soil are the most important steps. In this study, the evaluation of velocity response spectrum of seismic base according to the Korean seismic design guide and the simple method of calculating the response displacement were studied. It was found that velocity response spectrum of seismic base can be estimated by directly integrating the ground-surface acceleration response spectrum of soil type S$_A$, and the evaluation of the response displacement using double cosine method assuming two layers of soil profile shows the advantages in the seismic design.

Displacement Based Seismic Performance Improved Design of RC Column Retrofitted Steel Jacket (변위기반 설계법에 의한 RC 기둥의 Steel Jacket 보강 내진성능개선 설계법)

  • Jung, In-Kju;Cho, Chang-Geun;Park, Soon-Eung
    • Journal of Korean Association for Spatial Structures
    • /
    • v.10 no.4
    • /
    • pp.49-57
    • /
    • 2010
  • This study is the research appling the representative Displacement-Based Design which is the basic concept of Direct Displacement Based Design proposed by Chopra and Goel to original Reinforced Concrete structure and determining the thickness of retrofit Steel Jacket about the Maximum design ground acceleration, and developing the more improved Algorithm as well as program by the Retrofit Design method and Nonlinear analysis by the Performance design method before and after reinforcement appling the determined retrofit thickness. To predict the target displacement of retrofitted columns, a nonlinear analysis model of reinforced concrete columns has been developed to be based on the nonlinear fiber cross-sectional and segmental analysis model, and the seismic displacement level of retrofitted columns is estimated by two procedures, the direct displacement-based design method and the displacement coefficient method. In examples of seismic retrofit design, the current seismic improved design method gives good results in improvements of displacement levels and displacement ductilities of retrofitted columns.

  • PDF

Seismic Design of Vertical Shaft using Response Displacement Method (응답변위법을 적용한 수직구의 내진설계)

  • Kim, Yong-Min;Jeong, Sang-Seom;Lee, Yong-Hee;Jang, Jung-Bum
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.6C
    • /
    • pp.241-253
    • /
    • 2010
  • For seismic design of a vertical shaft, three-dimensional Finite Element (FE) analyses were performed to evaluate the accurate response of a vertical shaft and to apply a Response Displacement Method (RDM). Special attention is given to the evaluation of seismic base and response displacement of surrounding soil, estimation of load and loading method. Based on the result, it was found that shear wave velocity of seismic base greater than 1500m/s was appropriate for the seismic design. It was also found that double cosine method which evaluates a response displacement of surrounding soil was most appropriate to consider the characteristic of multi-layered soil. Finally, shape effect of the structure was considered to clarify the dynamic behavior of vertical shaft and it would be more economical vertical shaft design when a vertical shaft was analyzed by using RDM.

Seismic Design of Mid-to-Low Rise Steel Moment Frames Based on Available Connection Rotation Capacity (접합부 회전능력에 기초한 중/저층 철골모멘트골조의 내진설계)

  • Ahn, Jae Kwon;Lee, Cheol Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.6
    • /
    • pp.715-723
    • /
    • 2007
  • A displacement-based seismic design procedure was proposed for mid-to-low-rise steel moment frames. The proposed method was totally different from the current R-factor approach in that it directly uses available connection rotation capacity as a primary design variable. To this end, the relationship between available connection rotation capacity and seismic response modification (R factor) was established first; this relationship has been a missing link in current ductility-based design practice. A step-by-step displacement-based iterative design procedure was then proposed and verified using inelastic dynamic analysis.

Development of Performance-Based Seismic Design of RC Column Using FRP Jacket by Displacement Coefficient Method (FRP 보강 철근콘크리트기둥의 변위계수법에 의한 내진성능설계기법 개발)

  • Cho, Chang-Geun;Ha, Gee-Joo;Bae, Su-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.4
    • /
    • pp.491-497
    • /
    • 2007
  • In the current research, the scheme of displacement-based seismic design for seismic retrofit of concrete structures using FRP composite materials has been proposed. An algorithm of the nonlinear flexural analysis of FRP composite concrete members has been presented under multiaxial constitutive laws of concrete and composite materials. An algorithm for performance-based seismic retrofit design of reinforced concrete columns with FRP jacket has been newly introduced to modify the displacement coefficient method used in reinforced concrete structures. From applications of retrofit design, the method are easy to apply in the practice of retrofit design and give practical prediction of nonlinear seismic performance evaluation of retrofitted structures.

Seismic Capacity Evaluation of Bridge Structure using Capacity Spectrum Method (역량스펙트럼법에 의한 교량 구조물의 내진성능평가)

  • 박연수;오백만;박철웅;서병철
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.5
    • /
    • pp.67-73
    • /
    • 2003
  • The present seismic analysis of Road-Bridge Design Standard is on a basis of load-based analysis which lets structures have the strength over load. In this study, the capacity spectrum method, a kind of displacement based method, which is evaluated by displacement of structure, is presented as an alternative to the analysis method based on load. Seismic capacity is performed about the existing reinforced concrete pier which has already secured seismic design by capacity spectrum method. As a result. capacity spectrum method could realistically evaluate the non-elastic behavior of structures easily and quickly and the displacement of structures for variable ground motion level. And it could efficiently apply to an evaluation of seismic capacity about the existing structure and a verification of design for capacity target of the new structure.

Displacement Based Seismic Design of Steel jacket Retrofitted Reinforced Concrete Column (Steel-Jacket 보강 철근콘크리트 기둥의 변위기반 내진설계)

  • Jung, In-Kju;Cho, Chang-Geun;Park, Moon-Ho;Park, Soon-Eung;Nam, Yoo-Seok
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.197-198
    • /
    • 2009
  • This study is the research appling the representative Displacement-Based Design which is the basic concept of Direct Displacement Based Design proposed by Chopra and Goel to original Reinforced Concrete structure and determining the thickness of retrofit Steel Jacket about the Maximum design ground acceleration, and developing the more improved Algorithm as well as program by the Retrofit Design method and Nonlinear analysis by the Performance design method before and after reinforcement appling the determined retrofit thickness.

  • PDF