• Title/Summary/Keyword: 변위증분법

Search Result 47, Processing Time 0.025 seconds

Lateral-Torsional Post-Buckling Analyses of Thin-Walled Space Frames with Non-symmetric Sections (비대칭단면을 갖는 박벽 공간뼈대구조의 횡-비틂 후좌굴 유한요소해석)

  • Park, Hyo Gi;Kim, Sung Bo;Kim, Moon Young;Chang, Sung Pil
    • Journal of Korean Society of Steel Construction
    • /
    • v.11 no.2 s.39
    • /
    • pp.153-165
    • /
    • 1999
  • In order to trace the lateral-torsional post-bucking behaviors of thin-walled space frames with non-symmetric cross sections, a geometrically non-linear finite element formulation is presented by applying incremental equilibrium equations based on the updated Lagrangian formulation and introducing Vlasov's assumption. The improved displacement field for non-symmetric thin-walled cross sections is introduced based on inclusion of second order terms of finite rotations, and the potential energy corresponding to the semitangential rotations and moments is consistently derived. For finite element analysis, tangent stiffness matrices of thin-walled space frame element are derived by using the Hermition polynomials as shape functions. A co-rotational formulation in order to evaluate the unbalanced loads is presented by separating the rigid body rotations and pure deformations from incremental displacements and evaluating the updated direction cosines and incremental member forces.

  • PDF

Stability and Post-Buckling Analyses of Thin-Walled Space Frames Using Finite Element Method (박벽 공간뼈대구조의 안정성 및 후좌굴 유한요소해석)

  • 김문영;안성원
    • Computational Structural Engineering
    • /
    • v.10 no.4
    • /
    • pp.205-216
    • /
    • 1997
  • In order to trace the lateral post-buckling behaviors of thin-wafled space frames, a geometrically nonlinear finite element formulation is presented by applying incremental equilibrium equations based on the updated Lagrangian formulation and introducing Vlasov's assumption. The improved displacement field for symmetric thin-walled cross sections is introduced based on inclusion of second order terms of finite rotations, and the potential energy corresponding to the semitangential rotations and moments is consistently derived. For finite element analysis, tangent stiffness matrices of the thinwalled space frame element with 7 degrees of freedom including the restrained warping for each node are derived by using the Hermition polynomials as shape functions. A co-rotational formulation in order to evaluate the unbalanced loads is presented by separating the rigid body rotations and pure deformations from incremental displacements and evaluating the updated direction cosines of the frame element due to rigid body rotations and incremental member forces from pure deformations. Finite element solutions for the spatial buckling and post-buckling analysis of thin-walled space frames are presented and compared with available solutions and other researcher's results.

  • PDF

Geometrically Non-linear Finite Element Analysis of Space Frames (공간뼈대구조의 기하학적 비선형 유한요소해석)

  • 김문영;안성원
    • Computational Structural Engineering
    • /
    • v.10 no.1
    • /
    • pp.201-211
    • /
    • 1997
  • A clearly consistent finite element formulation for geometrically non-linear analysis of space frames is presented by applying incremental equilibrium equations based on the updated Lagrangian formulation and introducing Vlasov's assumption. The improved displacement field for symmetric cross sections is introduced based on inclusion of second order terms of finite rotations, and the potential energy corresponding to the semitangential rotations and moments is consistently derived. For finite element analysis, elastic and geometric stiffness matrices of the space frame element are derived by using the Hermitian polynomials as shape functions. A co-rotational formulation in order to evaluate the unbalanced loads is presented by separating the rigid body rotations and pure deformations from incremental displacements and evaluating the updated direction cosines of the frame element due to rigid body rotations and incremental member forces from pure deformaions. Finite element solutions for the spatial buckling and post-buckling analysis of space frames are compared with available solutions and other researcher's results.

  • PDF

Determination Method of Ramberg-Osgood Constants for Leak Before Break Evaluation (파단전 누설 평가를 위한 Ramberg - Osgood 상수 결정법)

  • Bae, Kyung Dong;Ryu, Ho Wan;Kim, Yun Jae;Kim, Jin Weon;Kim, Jong Sung;Oh, Young Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.7
    • /
    • pp.645-652
    • /
    • 2015
  • In this study, a method for determining Ramberg-Osgood constants for leak-before-break evaluation was investigated. The Ramberg-Osgood constants were calculated for SA312, TP316, and SA-508 Gr.1a in an operating temperature of $316^{\circ}C$. Incremental plasticity, using stress-strain data obtained from experiment, and deformation plasticity, using the Ramberg-Osgood constants, were considered in a finite element analysis. Using incremental plasticity and deformation plasticity, J-integrals and crack opening displacement values were calculated and compared. By comparing the results of incremental plasticity and deformation plasticity, a suitable method for determining Ramberg-Osgood constants for leak-before-break evaluation was confirmed.

Post-buckling analysis using a load-displacement control (하중과 변위의 동시제어에 의한 좌굴후 현상해석)

  • Kwon, Y.D.;Lim, B.S.;Park, C.;Choi, J.M.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.11
    • /
    • pp.1931-1942
    • /
    • 1997
  • A new load/displacement parameter method is developed for the cases that loads are applied to one or more points, and displacements of a structure are controlled at one or more points sinultaneously. The procedure exploits a generalized Riks method, which utilizes load/displacement parameters as scaling factors in order to analyze the post-buckling phenomena including snap-through or snap-back. A convergence characteristic is improved by employing new relaxation factors in incremental displacement parameter, particularly at the region where exhibits severe numerical instability. The improved performance is illustrated by means of numerical example.

Back Analysis of the Earth Wall in Multi-layered Subgrade (다층지반에 근입된 흙막이 벽의 역해석에 관한 연구)

  • 이승훈;김종민;김수일;장범수
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.1
    • /
    • pp.71-78
    • /
    • 2002
  • This paper presents a back-calculation technique leer the prediction of the behavior of earth wall inserted in multi-layered soil deposit. The soil properties are back-calculated from the measured displacement at each construction stage and the behavior of earth wall far the next construction stage is predicted using back-calculated soil properties. For multi-layered soil deposit, the back-calculation would be very difficult due to the increase in the number of variables. In this study, to solve this difficulty, the back-calculation was performed successively from the lowest layer to the upper layers. An efficient elasto-plastic beam-column analysis was used for forward analysis to minimize the computation time of iterative back-calculation procedure. The coefficients of subgrade reaction and lateral earth pressure necessary for the formation of p-y curve were selected as back calculation variables, and to minimize the effect of abnormal behavior of the wall which might be caused by any unexpected action during construction, the difference between measured displacement increment and computed displacement increment at each construction stages is used as the objective function of optimization. The constrained sequential linear programming was used for the optimization technique to found values of variables minimizing the objective function. The proposed method in this study was verified using numerically generated data and measured field data.

Geometrically Nonlinear Analysis of Plates Subjected to Uniaxial Compression by Finite Strip Method (일축(一軸) 압축(壓縮)을 받는 판(板)의 유한대판법(有限帶板法)에 의한 기하학적(幾何學的) 비선형(非線型) 해석(解析))

  • Lee, Yong Jae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.5 no.3
    • /
    • pp.107-115
    • /
    • 1985
  • For the finite deflection analysis of plates with initial deflections subjected to uniaxial compression, the formulation of incremental finite strip method is made and has been incorporated into a computer program. A new in plane displacement function varying along the load: direction has been derived from the out-of-plane displacement function by considering the curvature of a plate. Either incremental load type analysis or incremental displacement type analysis may be selected to solve incremental equibrium equations in the program. The following results have been obtained: 1. Incremental displacement type analysis is superior to incremental load type analysis in that the former converges more rapidly than the latter. 2. The finite strip method using the new displacement function gives as accurate results as analytical method and other finite element methods.

  • PDF

An Improved Method for Initial Shape Analysis of Cable-Stayed Bridges (사장교의 개선된 초기형상 해석법)

  • Kim, Moon Young;Kyung, Yong Soo;Lee, Jun Sok
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.2
    • /
    • pp.175-185
    • /
    • 2003
  • The extended tangent stiffness matrices and force-deformation relations of the elastic catenary element were initially derived through the addition of the unstrained length of cables to unknown nodal displacements. A beam-column element was then introduced to model the deck and pylon of cable-stayed bridges. The conventional geometric nonlinear analysis, initial force method, and TCUD method were summarized, with an effective method combining two methods presented to determine the initial shapes of cable-stayed bridges with dead loads. In this combined method, TCUD method was applied to eliminate vertical and horizontal displacements at cable-supported points of decks and on top of pylons, respectively. The initial force method was also adopted to eliminate horizontal and vertical displacements of decks and pylons, Finally, the accuracy and validity of the proposed combined method were demonstrated through numerical examples.

Failure Analysis of RC Cylindrical Structures using Layered Shell Element with a Pressure Node (압력절점을 갖는 적층쉘 요소에 의한 콘크리트 원통형 구조물의 파괴해석)

  • 송하원;방정용;변근주;최강룡
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.12 no.3
    • /
    • pp.475-484
    • /
    • 1999
  • 압력절점은 요소의 균등한 압력증분을 1개의 자유도로 갖는 절점이며, 유한요소의 하중-변위 평형방정식에 체적과 압력의 관계를 추가하여 한계압력 이후에서도 체적변화에 따른 압력증분을 직접적으로 제저할 수 있는 절점이다. 본 연구에서는 철근콘크리트의 평면 구성 방정식과 적층정식화에 적용한 쉘 요소에 압력절점을 추가하고 해석시 체적을 제어함으로써 철근콘크리트 원통형 구조에 대해 파괴까지의 극한내압 능력을 해석할 수 있는 체적제어 비선형 해석기법을 개발하였다. 본 논문에서 제안한 해석기법을 이용하여 철근콘크리트 원통형 구조물에 대하여 비선형 해석을 수행하여 한계압력과 한계압력 이후의 구조물의 거동을 예측하였으며 실험결과와 비교 검증하였다.

  • PDF

Geometric Non-linear Analysis of Plane Frame Structures subjected to Conservative and Non-conservative Forces (보존력(保存力) 및 비보존력(非保存力)을 받는 평면(平面)뼈대 구조물(構造物)의 기하적(幾何的) 비선형(非線形) 해석(解析))

  • Kim, Moon Young;Chang, Sung Pil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.1
    • /
    • pp.17-26
    • /
    • 1990
  • A solution strategy for geometric non-linear analysis for the plane frame structures subjected to conservative and non-conservative forces is presented. By making efficient combination of the load incremental method and the displacement incremental method, this strategy can find postbuckling configuration such as snap-through and turning-back phenomena which cannot be easily found by the conventional load and displacement incrementation scheme. In the case of the analysis of the framed structure subjected to circulatory non-conservative forces, the total tangent stiffness matrix becomes unsymmetric and when calculating the incremental load and unbalanced load vector components, the direction change of the non-conservative forces is considered. Several example problems to demonstrate the feasibility of the present strategy, over ranges of deformation that are well beyond those likly to occur in practical framed structures, are given and discussed.

  • PDF