• Title/Summary/Keyword: 변동성 모형

Search Result 1,269, Processing Time 0.032 seconds

Groundwater Recharge Estimation of Musim Catchment with Spatial-Temporal Variability (SWAT모형을 이용한 무심천 유역의 지하수 함양량의 추정)

  • Chung, Il-Moon;Kim, Nam-Won;Lee, Jeong-Woo;Lee, Byong-Ju
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1905-1909
    • /
    • 2006
  • 지하수 함양량을 정확하게 산정하는 것은 지하수계의 적절한 관리를 위해서 매우 중요하다. 국내에서 주로 사용되는 지하수 함양량 추정방법은 지하수위 변동법, 기저유출 분리법, 연단위 물수지 분석법 등이 있다. 그러나, 이들 방법은 집중형 개념을 기반으로 하기 때문에 기후조건, 토지이용, 토양조건, 수리지질학적 비균질성에 의한 함양량의 시공간적 변동성을 구현할 수 없다. 따라서 본 연구에서는 유역의 비균질성을 반영할 수 있는 SWAT 모형을 이용하여 시공간적 변동성을 고려한 지하수 함양량을 산정하는 방법을 제시하고자 한다. SWAT 모형은 유역내 일단위 지표면 유출량, 증발산량, 토양저류량, 함양량, 지하수유출량 등의 수문성분을 계산할 수 있는 모형이다. 본 연구에서는 SWAT 모형을 미호천 유역의 최상류인 무심천 유역에 적용하였다. 2001년 - 2004년까지의 기간동안 지하수 함양량을 포함한 유역의 일단위 수문성분들을 모의하였으며, 유역출구점에서의 실측 일유출자료와 모의 일유출자료의 비교를 통해서 모의결과의 유효성을 검토하였다. 지하수 함양량의 시공간적 변화를 분석한 결과, 지하수 함양량의 변동성은 토지이용 변화뿐만 아니라, 유역경사와 같은 지형인자에도 큰 영향을 받는 것으로 분석되었다.

  • PDF

변동성과 레버리지 그리고 기업규모에 관한 실증연구

  • Gu, Maeng-Hoe;Lee, Yun-Seon
    • The Korean Journal of Financial Management
    • /
    • v.15 no.2
    • /
    • pp.1-22
    • /
    • 1998
  • 본 논문은 조건부이분산모형을 이용하여 주가수준이 상대적으로 낮아지면 레버리지가 높아져서 변동성이 크게 나타난다는 레버리지효과 가설과 기업규모가 변동성에 미치는 영향을 우리나라 증권시장에서 실증분석하였다. 변동성(變動性)에 대한 레버리지효과(效果)에 관한 연구는 1992년 1월 3일에서 1996년12월 27일까지 5년간 표본기업 71개의 일별 주식수익률 퍼센티지자료를 사용하여 분석하였다. 분석에 사용한 조건부이분산모형은 '수정된 EGARCH'모형이며 이 수정된 EGARCH모형의 분산식에 개별기업의 주가수준을 독립변수로 하여 레버리지효과를 분석하였다. 분석결과는 변동성의 주가탄력성 계수가 음(陰)(-)의 값을 보이긴 하였으나 통계적으로 유의적이지 못하였다. 그러나 유의수준 10% 이하에서 의미를 가지는 변동성 주가탄력성 파라메타를 가진 표본이 전체표본의 50.7%를 차지하여 경제적 의미를 과소평가할 수 없는 것으로 보였다. 또한 기업규모가 변동성과의 관계를 실증분석하기 위하여 비모수적인 방법인 스피어만 순위상관분석을 이용하였다. 그 분석결과 미국의 연구결과와는 달리 우리나라에서는 기업규모가 클수록 변동성의 주가탄력성이 커지는 것으로 나타났다. 이 같은 원인은 기관 및 법인투자가와 외국인투자가의 투자비중이 높아지면서 대형주 위주의 매매패턴에 기인하는 것으로 보여진다. 이상으로 볼 때 기업규모는 변동성의 또 다른 요인으로서 설명할 수 있을 것으로 보인다.

  • PDF

Forecasting volatility index by temporal convolutional neural network (Causal temporal convolutional neural network를 이용한 변동성 지수 예측)

  • Ji Won Shin;Dong Wan Shin
    • The Korean Journal of Applied Statistics
    • /
    • v.36 no.2
    • /
    • pp.129-139
    • /
    • 2023
  • Forecasting volatility is essential to avoiding the risk caused by the uncertainties of an financial asset. Complicated financial volatility features such as ambiguity between non-stationarity and stationarity, asymmetry, long-memory, sudden fairly large values like outliers bring great challenges to volatility forecasts. In order to address such complicated features implicity, we consider machine leaning models such as LSTM (1997) and GRU (2014), which are known to be suitable for existing time series forecasting. However, there are the problems of vanishing gradients, of enormous amount of computation, and of a huge memory. To solve these problems, a causal temporal convolutional network (TCN) model, an advanced form of 1D CNN, is also applied. It is confirmed that the overall forecasting power of TCN model is higher than that of the RNN models in forecasting VIX, VXD, and VXN, the daily volatility indices of S&P 500, DJIA, Nasdaq, respectively.

A Study for Forecasting Methods of ARMA-GARCH Model Using MCMC Approach (MCMC 방법을 이용한 ARMA-GARCH 모형에서의 예측 방법 연구)

  • Chae, Wha-Yeon;Choi, Bo-Seung;Kim, Kee-Whan;Park, You-Sung
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.2
    • /
    • pp.293-305
    • /
    • 2011
  • The volatility is one of most important parameters in the areas of pricing of financial derivatives an measuring risks arising from a sudden change of economic circumstance. We propose a Bayesian approach to estimate the volatility varying with time under a linear model with ARMA(p, q)-GARCH(r, s) errors. This Bayesian estimate of the volatility is compared with the ML estimate. We also present the probability of existence of the unit root in the GARCH model.

A deep learning analysis of the Chinese Yuan's volatility in the onshore and offshore markets (딥러닝 분석을 이용한 중국 역내·외 위안화 변동성 예측)

  • Lee, Woosik;Chun, Heuiju
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.2
    • /
    • pp.327-335
    • /
    • 2016
  • The People's Republic of China has vigorously been pursuing the internationalization of the Chinese Yuan or Renminbi after the financial crisis of 2008. In this view, an abrupt increase of use of the Chinese Yuan in the onshore and offshore markets are important milestones to be one of important currencies. One of the most frequently used methods to forecast volatility is GARCH model. Since a prediction error of the GARCH model has been reported quite high, a lot of efforts have been made to improve forecasting capability of the GARCH model. In this paper, we have proposed MLP-GARCH and a DL-GARCH by employing Artificial Neural Network to the GARCH. In an application to forecasting Chinese Yuan volatility, we have successfully shown their overall outperformance in forecasting over the GARCH.

Stochastic Volatility Models Using Bayesian Estimation for the Leverage Effect of Dry-bulk Freight Rate (건화물선 운임의 레버리지 효과 대한 확률 변동성 모형을 활용한 베이지안 추정)

  • Kim, Hyun-Sok
    • Journal of Korea Port Economic Association
    • /
    • v.38 no.4
    • /
    • pp.13-23
    • /
    • 2022
  • In this study, from January 2015 to April 2020, we propose a stochastic volatility model to capture the leverage effect on daily freight yields in the dry cargo market and analyze the freight yields. Estimation involving the Bayesian Markov Chain Monte Carlo method for the leverage effect based on the negative correlation that exists between returns and volatility in stochastic volatility analysis yields similar estimates, and the statistcs indicates significant. That is, the results of the empirical analysis show that the degree of correlation between returns and volatility, and the magnitude and sign of fluctuations differ, which suggests that taking into account the leverage effect in the SV model improves the goodness of fit of the estimates. In addition to the statistical significance of the estimated model's leverage effect, the analysis by log predictive power score presents the estimated results with improved predictive power of the model considering the leveraged effect. These astatistically significant empirical results show that the stochastic volatility model considering the leverage effect is important for freight rate risk modeling in the marine industry.

Stock return volatility based on intraday high frequency data: double-threshold ACD-GARCH model (이중-분계점 ACD-GARCH 모형을 이용한 일중 고빈도 자료의 주식 수익률 변동성 분석)

  • Chung, Sunah;Hwang, S.Y.
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.1
    • /
    • pp.221-230
    • /
    • 2016
  • This paper investigates volatilities of stock returns based on high frequency data from stock market. Incorporating the price duration as one of the factors in volatility, we employ the autoregressive conditional duration (ACD) model for the price duration in addition to the GARCH model to analyze stock volatilities. A combined ACD-GARCH model is analyzed in which a double-threshold is introduced to accommodate asymmetric features on stock volatilities.

An Empirical Analysis of KOSPI Volatility Using GARCH-ARJI Model (GARCH-ARJI 모형을 할용한 KOSPI 수익률의 변동성에 관한 실증분석)

  • Kim, Woo-Hwan
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.1
    • /
    • pp.71-81
    • /
    • 2011
  • In this paper, we systematically analyzed the variation of KOSPI returns using a GARCH-ARJI(auto regressive jump intensity) model. This model is possibly to capture time varying volatility as well as time varying conditional jump intensity. Thus, we can decompose return volatility into usual variation explained by the GARCH model and unusual variation that resulted from external news or shocks. We found that the jump intensity implied on KOSPI return series clearly shows time varying. We also found that conditional volatility due to jump is generally smaller than that resulted from usual variation. We also analyzed the effect of 9.11 and the 2008 financial crisis on the volatility of KOSPI returns and conclude that there is strong and persistent impact on the KOSPI from the 2008 financial crisis.

On multivariate GARCH model selection based on risk management (리스크 관리 측면에서 살펴본 다변량 GARCH 모형 선택)

  • Park, SeRin;Baek, Changryong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.6
    • /
    • pp.1333-1343
    • /
    • 2014
  • Hansen and Lund (2005) documented that a univariate GARCH(1,1) model is no worse than other sophisticated GARCH models in terms of prediction errors such as MSPE and MAE. Here, we extend Hansen and Lund (2005) by considering multivariate GARCH models and incorporating risk management measures such as VaR and fail percentage. Our Monte Carlo simulations study shows that multivariate GARCH(1,1) model also performs well compared to asymmetric GARCH models. However, we suggest that actual model selection should be done with care in light of risk management. It is applied to the realized volatilities of KOSPI, NASDAQ and HANG SENG index for recent 10 years.

Volatility-nonstationary GARCH(1,1) models featuring threshold-asymmetry and power transformation (분계점 비대칭과 멱변환 특징을 가진 비정상-변동성 모형)

  • Choi, Sun Woo;Hwang, Sun Young;Lee, Sung Duck
    • The Korean Journal of Applied Statistics
    • /
    • v.33 no.6
    • /
    • pp.713-722
    • /
    • 2020
  • Contrasted with the standard symmetric GARCH models, we consider a broad class of threshold-asymmetric models to analyse financial time series exhibiting asymmetric volatility. By further introducing power transformations, we add more flexibilities to the asymmetric class, thereby leading to power transformed and asymmetric volatility models. In particular, the paper is concerned with the nonstationary volatilities in which conditions for integrated volatility and explosive volatility are separately discussed. Dow Jones Industrial Average is analysed for illustration.