• Title/Summary/Keyword: 벽체

Search Result 1,360, Processing Time 0.039 seconds

Development of Precast Concrete Structural Wall which Can Assure Reliable Seismic Performance (내진성능이 개선된 PC구조벽체의 개발)

  • Kang, Su-Min;Oh, Jae-Keun;Kim, Ook-Jong;Lee, Do-Bum
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.459-460
    • /
    • 2009
  • The purpose of this study is to develop precast concrete structural wall panel that can assure reliable seismic performance. In the previous study, the connection of precast concrete structural wall has some problems in seismic performance. Therefore, this research proposed the precast concrete structural walls which can improve seismic performance. And their seismic performance was verified through lateral loading experiment.

  • PDF

Lateral Earth Pressures on Symmetrical Backslope Walls (대칭경사진 벽체의 되메움 수평토압에 관한 연구)

  • 이종규;허경한
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.5
    • /
    • pp.147-155
    • /
    • 2001
  • 좁은 되메움 공간의 벽체가 연직 또는 한쪽 벽체만이 경사진 경우 수평토압에 관한 연구는 국내외에서 상당히 진전되어 왔으나, 대칭으로 경사진 경우의 연구는 미흡한 실정이다. 본 연구는 되메움 공간의 벽체가 대칭으로 경사지고 벽체간 하부폭이 다를 때 발생되는 수평토압에 관한 거동을 구명하기 위하여 시도되었다. 이를 위하여 모형토조를 사용하여 되메움 공간의 벽체가 대칭으로 경사진 경우 벽체의 경사각, 하부폭, 벽마찰각, 상대밀도를 변화시켜 총 24종류의 모형실험을 수행하였고, 이 결과를 Kellogg(1993)제안식, 벽면경사를 고려한 수정 제안식 및 벽면마찰반력으로부터 구한 수평토압과 비교, 분석하였다. 연구 결과 벽면마찰반력을 고려한 경우 평균연직토압을 적용하였음에도 Arching 효과가 발휘된 실험결과와 가장 근소한 차이를 나타내었다.

  • PDF

Deformation of flows due to Two Wall Structure (2열 벽체 잠제에 대한 흐름장 변형)

  • Kim, Hyo Seob;Youn, Suk Zun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.987-991
    • /
    • 2004
  • 잠제 형식의 발달에 따른 구조물들의 성능 및 환경 개선에 대한 연구가 활발해지고 있는 시점에서 벽체 형태의 잠제에 대한 연구는 다양한 각도에서 실행되고 있다. 이러한 벽체 구조물의 배치거리에 따른 효과를 연구하는 것을 목적으로 1열과 2열 벽체 잠제에 대한 조류와 같은 일방향 흐름장의 변화를 수치모형을 이용하여 분석하였다.

  • PDF

Confinement Range of Transverse Reinforcements for T-shaped Reinforced Concrete Walls (철근콘크리트 T형 벽체의 콘크리트 구속을 위한 횡철근의 배근범위)

  • 하상수;오영훈;최창식;이리형
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.6
    • /
    • pp.1001-1009
    • /
    • 2002
  • The objective of this study is to determine the range of confinement (or the transverse reinforcement of the reinforced concrete structural walls with the T-shaped cross section subjected to cyclic lateral loads. The range of confinement for transverse reinforcement is related to the location of neutral axis and determined by the magnitude and distribution of compressive strain. The compressive strain depends on the ratio of wall cross sectional area to the floor-plan area, the aspect ratio, configuration, the axial load, and the reinforcement ratios. By affection of flange, the neutral axis appears different depending on positive and negative forces and because of this reason, when web and flange are subjected to compressive stress, the range of confinement for the transverse reinforcement of T-shaped walls would shows different result. Therefore this experimental research focused on the structural characteristics of T-shaped walls and suggested the neutral axis depth through comparing the results of this study with sectional analysis.

Active Earth Pressure Acting on the Cylindrical Retaining Wall of a Shaft (원형수직구의 흙막이 벽체에 작용하는 주동토압)

  • Chun, Byungsik;Shin, Youngwan
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.4
    • /
    • pp.15-24
    • /
    • 2006
  • It is well known that earth pressure on the cylindrical open caisson and cylindrical retaining wall of a shaft is less than that at-rest and in plane strain condition because of the horizontal and vertical arching effects due to wall displacement and stress relief. In order to examine the earth pressure distribution of a cylindrical wall, model tests were performed in dry sand for the care of constant wall displacement with depth. Model test apparatus which can control wall displacement, wall friction, and wall shape ratio was developed. The effects of various factors that influence earth pressure acting on the cylindrical retaining wall of a shaft were investigated.

  • PDF

The Lateral Earth Pressure on Rigid Retaining Wall Due to the Various Modes of Wall Movement (벽체변위에 따른 기류벽에 작용하는 토압)

  • Chae, Yeong-Su;Im, Byeong-Ju;Baek, Yeong-Sik
    • Geotechnical Engineering
    • /
    • v.1 no.1
    • /
    • pp.21-30
    • /
    • 1985
  • The reasonable static and dynamic earth pressure equations were developed by applying the Dubrova's theory and Chang's method to the following cases of wall movements; (1) Active case rotating about the top (2) Active case rotating about the bottom (3) Passive case rotating about the top (4) Passive case rotating about the bottom The equations are presented in accordance with particular wall displacements for the sand and cohesive back-fill, respectively. The results computed by the proposed equations are compared with the conventional theoretical values.

  • PDF

Experimental Study On Seismic Behavior Of Masonry Walls With Column (기둥 및 벽체가 보강된 조적벽체의 지진거동에 대한 실험적 연구)

  • Kikuchi, Kenji;Park, Kang-Geun
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.2 s.20
    • /
    • pp.93-105
    • /
    • 2006
  • In order to investigate the effect of the height of application point of lateral loads and reinforcing steel bars in walls and columns in improving the seismic behavior of confined concrete block masonry walls, an experimental research program is conducted. A total of twelve one-half scale specimens are tested under repeated lateral loads. Specimens are tested to failure with increasing maximum lateral drifts while a vertical axial load was applied and maintained constant. The specimens adopted are two-dimensional (2D) hollow concrete block masonry walls with different parameters such as shear span ratio, inflection point and percent of reinforcement in confining columns and walls. Test results obtained for each specimen include cracking patterns, load-deflection curve, and strains in reinforcement and walls in critical locations. Analysis of test data showed that above parameters generate a considerable effect on the seismic performance of confined concrete block masonry walls.

  • PDF

A Study on Hybrid Wall System on Connection Type of Coupling Beam (커플링 보의 접합방식에 따른 복합 벽체 시스템에 관한 연구)

  • Yun, Hyun-Do;Park, Wan-Shin;Han, Byung-Chan;Yun, Yeo-Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.4
    • /
    • pp.201-208
    • /
    • 2003
  • The Hybrid Wall System(HWS) building composed of center core reinforced concrete walls and exterior steel frame has open space around the center core walls. It is necessary to develop design methodologies for the HWS building that the coupled shear walls withstand the most of lateral load and expect the most energy dissipation at the coupling beams and at wall foots. Major factors considered in this paper are connection type of coupling beams and scale of story. The studies of the system are investigated in terms of shear force, overturning moment, maximum lateral displacement, story drift ratio, and dynamical characteristics under the action of vertical and lateral forces such as wind and seismic loads.

Behavior of Precast Concrete Shear Walls with C-Type Connections (C형 접합부를 이용한 프리캐스트 콘크리트 전단벽의 거동)

  • Lim, Woo-Young;Hong, Sung-Gul
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.4
    • /
    • pp.461-472
    • /
    • 2010
  • This paper investigates the behavior of precast concrete (PC) shear walls with a new vertical connections for a fast remodeling construction. The C-type vertical connections for the PC wall systems are proposed for transfer of bending moment between top and bottom walls in the vertical direction while a shear key in the center of wall is prepared to transfer shear forces by bearing action. The proposed vertical connections allows easy fabrication thanks to slots at the edges of wall in opposite directions. The plane PC wall systems subject to lateral load are compared with ordinary wall systems by investigating the effects of connection on the stiffness, strength, ductility, and failure modes of whole systems. The load-displacement relationship and influence of premature failure of connections are examined. The experimental test showed that the longitudinal reinforcing steel bars placed at the edges of walls yielded first and the ultimate deformation were terminated due to premature failure of connections. The diagonal reinforcements for efficient shear transfer in the walls were not effective. The strength and deformation obtained through the section analysis were generally in agreement with the experimental data, and indicated that. Gap opening contributed to the deformation behavior more than any other factors.

Experimental study on the ground movement due to consecutive construction of retaining wall and underground space in cohesionless soil (사질토 지반에서 흙막이벽체-지하공간 연속 굴착에 따른 지반거동에 대한 실험적 연구)

  • Park, Jong-Deok;Yu, Jeong-Seon;Kim, Do-Youp;Lee, Seok-Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.3
    • /
    • pp.267-281
    • /
    • 2015
  • The ground movement and changes in earth pressure due to the consecutive construction of retaining wall and underground space were studied experimentally. A soil tank having 160 cm in length and 120 cm in height, was manufactured to simulate the vertical excavation like retaining wall by using 10 separated right side walls and underground space excavation like tunnel by using 5 separated bottom walls. The variation of earth pressure and surface settlement were measured according to the excavation stages. The results showed that the decrease of earth pressure due to the wall movement can cause the increase of earth pressure of the neighboring walls proving the arching effect. Experiments simulating continuous construction sequence also identified arching effect, however only 50% of earth pressure was restored on the 10th right side wall due to the movement of 1st bottom side wall unusually.