Proceedings of the Korean Society of Broadcast Engineers Conference
/
2016.11a
/
pp.23-24
/
2016
본 논문에서는 온라인 오디오 장르 분류의 성능을 비교 분석한다. 온라인 동작을 위해 1초 단위의 오디오 신호를 입력하여 music, speech, effect 중 하나의 장르로 판단한다. 학습 방법은 GMM과 심층 신경망을 사용하며, 특성은 MFCC와 스펙트로그램을 포함하는 네 가지 종류의 벡터를 사용한다. 각 성능을 비교 분석하여 장르 분류에 적합한 학습 방법과 특성 벡터를 확인한다.
Proceedings of the Korea Multimedia Society Conference
/
2002.05c
/
pp.245-248
/
2002
OCR 시스템에서 feature는 인식성능에 상당히 중요한 역할을 한다. gradient feature는 현재까지 개발되어진 여러 가지 feature들 중에서 폭넓게 사용되고 있는 것 중의 하나이다. 본 논문에서는 변형이 심한 인쇄체 숫자를 실험대상으로 하고, Kirsch mask를 이용한 방향성을 가지는 edge를 추출하여 신경망의 입력벡터로 사용할 때 압축의 크기에 따른 인식성능의 차이를 비교하고, 최적의 벡터크기를 제안한다.
Journal of the Korean Society of Propulsion Engineers
/
v.11
no.1
/
pp.43-50
/
2007
In this study, Hybrid Separate Learning Algorithm(SLA) consisting of Support Vector Machine(SVM) and Artificial Neural Network(ANN) has been used for developing the defect diagnostic algorithm of the aircraft turbo-shaft engine in the off-design range considering altitude variation. Although the number of teaming data and test data highly increases more than 6 times compared with those required for the design condition, the proposed defect diagnostics of gas turbine engine using SLA was verified to give the high defect classification accuracy in the off-design range considering altitude variation.
Journal of Korean Society for Geospatial Information Science
/
v.7
no.1
s.13
/
pp.11-20
/
1999
To establish the basis of GPS network for the perception of diastrophism, we slected 7 stations(baseline $100{\sim}300km$) all around south Korea considering the earthquake and the satellites all-in-view. As a result of periodical measurement, the change of relative positions between selected stations in Korea was very small. We could know that the baseline between Korea and Japan are decreasing by a few centimeters, as one of the results of analysing baseline vector changes by continuous measuring IGS stations and Korea(KAMC) station.
Proceedings of the Korea Information Processing Society Conference
/
2019.05a
/
pp.383-386
/
2019
4 차산업혁명의 발달은 전 세계가 건강한 삶에 관련된 스마트시티 및 맞춤형 치료에 큰 관심을 갖게 하였고, 특히 기계학습 기술은 암을 극복하기 위한 유전체 기반의 정밀 의학 연구에 널리 활용되고 있어 암환자의 예후 예측 및 예후에 따른 맞춤형 치료 전략 수립 등을 가능케하였다. 하지만 암 예후 예측 연구에 주로 사용되는 유전자 발현량 데이터는 약 17,000 개의 유전자를 갖는 반면에 샘플의 수가 200 여개 밖에 없는 문제를 안고 있어, 예후 예측을 위한 신경망 모델의 일반화를 어렵게 한다. 이러한 문제를 해결하기 위해 본 연구에서는 고차원의 유전자 발현량 데이터를 신경망 모델이 효과적으로 학습할 수 있도록 2D 이미지로 표현하는 기법을 제안한다. 길이 17,000 인 1 차원 유전자 벡터를 64×64 크기의 2 차원 이미지로 사상하여 입력크기를 압축하였다. 2 차원 평면 상의 유전자 좌표를 구하기 위해 유전자 네트워크 데이터와 Node2Vec 이 활용되었고, 이미지 기반의 암 예후 예측을 수행하기 위해 합성곱 신경망 모델을 사용하였다. 제안하는 기법을 정확하게 평가하기 위해 이중 교차 검증 및 무작위 탐색 기법으로 모델 선택 및 평가 작업을 수행하였고, 그 결과로 베이스라인 모델인 고차원의 유전자 벡터를 입력 받는 다층 퍼셉트론 모델보다 더 높은 예측 정확도를 보여주는 것을 확인하였다.
In this paper, we propose a new method for music genre classification using spikegram and deep neural network. The human auditory system encodes the input sound in the time and frequency domain in order to maximize the amount of sound information delivered to the brain using minimum energy and resource. Spikegram is a method of analyzing waveform based on the encoding function of auditory system. In the proposed method, we analyze the signal using spikegram and extract a feature vector composed of key information for the genre classification, which is to be used as the input to the neural network. We measure the performance of music genre classification using the GTZAN dataset consisting of 10 music genres, and confirm that the proposed method provides good performance using a low-dimensional feature vector, compared to the current state-of-the-art methods.
The Journal of Korean Institute of Communications and Information Sciences
/
v.24
no.8B
/
pp.1549-1557
/
1999
In this paper, we propose a face recognition algorithm based on the differential image method-DCT This algorithm uses neural networks which is flexible for noise. Using the same condition (same luminous intensity and same distance from the fixed CCD camera to human face), we have captured two images. One doesn't contain human face. The other contains human face. Differential image method is used to separate the second image into face region and background region. After that, we have extracted square area from the face region, which is based on the edge distribution. This square region is used as the characteristics region of human face. It contains the eye bows, the eyes, the nose, and the mouth. After executing DCT for this square region, we have extracted the feature vectors. The feature vectors were normalized and used as the input vectors of the neural network. Simulation results show 100% recognition rate when face images were learned and 92.25% recognition rate when face images weren't learned for 30 persons.
There have been various cohesion measurements studied considering reference relation among attributes and methods in a class. Generally, these cohesion measurement are camed out in one class. If the range of reference relation considered are extended from one class to two classes, we could find out the reference relation between two classes. Tn this paper, we proposed a neural network to determine the method location. Neural network is effective to predict output value from input data not to be included in training and generalize after training input and output pattern repeatedly. Learning vector is generated with 30-dimensional input vector and one target binary values of method location in a constraint that there are two classes which have less than or equal to 5 attributes and methods The result of the proposed neural network is about 95% in cross-validation and 88% in testing.
Text classification is one of the text mining technologies that classifies a given textual document into its appropriate categories and is used in various fields such as spam email detection, news classification, question answering, emotional analysis, and chat bot. In general, the text classification system utilizes machine learning algorithms, and among a number of algorithms, naïve Bayes and support vector machine, which are suitable for text data, are known to have reasonable performance. Recently, with the development of deep learning technology, several researches on applying deep neural networks such as recurrent neural networks (RNN) and convolutional neural networks (CNN) have been introduced to improve the performance of text classification system. However, the current text classification techniques have not yet reached the perfect level of text classification. This paper focuses on the fact that the text data is expressed as a vector only with the word dimensions, which impairs the semantic information inherent in the text, and proposes a neural network architecture based upon the semantic tensor space model.
Proceedings of the Korean Information Science Society Conference
/
2003.04c
/
pp.359-361
/
2003
정확한 암의 분류는 암의 진단 및 치료에 있어 매우 중요하지만, 암을 진단하기 위한 기존의 여러 방법들은 종종 불완전한 결과를 도출한다. 최근의 마이크로어레이 기술에 기반한 분자 수준의 진단은 정확하고 객관적이며 체계적인 암의 분류를 위한 방법론을 제시해준다. 유전자 발현 데이터는 일반적으로 수천개 이상의 유전자를 포함하는데, 유전자 발현 데이터의 모든 유전자가 암과 관련이 있는 것이 아니므로 정확한 암을 분류하기 위하여 중요한 유전자만을 추출하는 것이 바람직하다. 본 논문에서 음의 상관관계를 갖는 두 개의 이상적인 유전자 벡터를 정의한 후 이와 유사한 정도를 기준으로 중요한 유전자 집단을 추출하고, 각각을 신경망으로 학습하여 결합하는 신경망 쌍을 제안한다. 실험 결과는 음의 상관관계를 갖는 두 개의 유전자 집단이 암의 클래스를 잘 구분할 수 있음을 보여주었다. 이 유전자 집단을 특징으로 하여 각각 학습한 신경망을 베이시안 방법으로 결합한 결과, 벤치마크 데이터에 대하여 신경망 쌍이 개별 분류기에 비해 우수한 성능을 보임을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.