• Title/Summary/Keyword: 벡터망

Search Result 506, Processing Time 0.025 seconds

The Performance Analysis of On-line Audio Genre Classification (온라인 오디오 장르 분류의 성능 분석)

  • Yun, Ho-Won;Jang, Woo-Jin;Shin, Seong-Hyeon;Park, Ho-Chong
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2016.11a
    • /
    • pp.23-24
    • /
    • 2016
  • 본 논문에서는 온라인 오디오 장르 분류의 성능을 비교 분석한다. 온라인 동작을 위해 1초 단위의 오디오 신호를 입력하여 music, speech, effect 중 하나의 장르로 판단한다. 학습 방법은 GMM과 심층 신경망을 사용하며, 특성은 MFCC와 스펙트로그램을 포함하는 네 가지 종류의 벡터를 사용한다. 각 성능을 비교 분석하여 장르 분류에 적합한 학습 방법과 특성 벡터를 확인한다.

  • PDF

Performance Comparison of Various Kirsch Feature for Printed Numeral Recognition (Kirsch Feature의 압축크기에 따른 인쇄체 숫자 인식에서의 성능 비교)

  • 김성우;최선아;차의영
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2002.05c
    • /
    • pp.245-248
    • /
    • 2002
  • OCR 시스템에서 feature는 인식성능에 상당히 중요한 역할을 한다. gradient feature는 현재까지 개발되어진 여러 가지 feature들 중에서 폭넓게 사용되고 있는 것 중의 하나이다. 본 논문에서는 변형이 심한 인쇄체 숫자를 실험대상으로 하고, Kirsch mask를 이용한 방향성을 가지는 edge를 추출하여 신경망의 입력벡터로 사용할 때 압축의 크기에 따른 인식성능의 차이를 비교하고, 최적의 벡터크기를 제안한다.

  • PDF

Defect Diagnostics of Gas Turbine with Altitude Variation Using Hybrid SVM-Artificial Neural Network (SVM-인공신경망 알고리즘을 이용한 고도 변화에 따른 가스터빈 엔진의 결함 진단 연구)

  • Lee, Sang-Myeong;Choi, Won-Jun;Roh, Tae-Seong;Choi, Dong-Whan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.1
    • /
    • pp.43-50
    • /
    • 2007
  • In this study, Hybrid Separate Learning Algorithm(SLA) consisting of Support Vector Machine(SVM) and Artificial Neural Network(ANN) has been used for developing the defect diagnostic algorithm of the aircraft turbo-shaft engine in the off-design range considering altitude variation. Although the number of teaming data and test data highly increases more than 6 times compared with those required for the design condition, the proposed defect diagnostics of gas turbine engine using SLA was verified to give the high defect classification accuracy in the off-design range considering altitude variation.

Establishing GPS network for the Perception of Diastrophism in Korea (한반도의 지각변동 감지를 위한 GPS 관측망 구축 (1))

  • Kang, Joon-Mook;Song, Seung-Ho;Lee, Young-Wook;Choi, Jong-Hyun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.7 no.1 s.13
    • /
    • pp.11-20
    • /
    • 1999
  • To establish the basis of GPS network for the perception of diastrophism, we slected 7 stations(baseline $100{\sim}300km$) all around south Korea considering the earthquake and the satellites all-in-view. As a result of periodical measurement, the change of relative positions between selected stations in Korea was very small. We could know that the baseline between Korea and Japan are decreasing by a few centimeters, as one of the results of analysing baseline vector changes by continuous measuring IGS stations and Korea(KAMC) station.

  • PDF

A novel Node2Vec-based 2-D image representation method for effective learning of cancer genomic data (암 유전체 데이터를 효과적으로 학습하기 위한 Node2Vec 기반의 새로운 2 차원 이미지 표현기법)

  • Choi, Jonghwan;Park, Sanghyun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2019.05a
    • /
    • pp.383-386
    • /
    • 2019
  • 4 차산업혁명의 발달은 전 세계가 건강한 삶에 관련된 스마트시티 및 맞춤형 치료에 큰 관심을 갖게 하였고, 특히 기계학습 기술은 암을 극복하기 위한 유전체 기반의 정밀 의학 연구에 널리 활용되고 있어 암환자의 예후 예측 및 예후에 따른 맞춤형 치료 전략 수립 등을 가능케하였다. 하지만 암 예후 예측 연구에 주로 사용되는 유전자 발현량 데이터는 약 17,000 개의 유전자를 갖는 반면에 샘플의 수가 200 여개 밖에 없는 문제를 안고 있어, 예후 예측을 위한 신경망 모델의 일반화를 어렵게 한다. 이러한 문제를 해결하기 위해 본 연구에서는 고차원의 유전자 발현량 데이터를 신경망 모델이 효과적으로 학습할 수 있도록 2D 이미지로 표현하는 기법을 제안한다. 길이 17,000 인 1 차원 유전자 벡터를 64×64 크기의 2 차원 이미지로 사상하여 입력크기를 압축하였다. 2 차원 평면 상의 유전자 좌표를 구하기 위해 유전자 네트워크 데이터와 Node2Vec 이 활용되었고, 이미지 기반의 암 예후 예측을 수행하기 위해 합성곱 신경망 모델을 사용하였다. 제안하는 기법을 정확하게 평가하기 위해 이중 교차 검증 및 무작위 탐색 기법으로 모델 선택 및 평가 작업을 수행하였고, 그 결과로 베이스라인 모델인 고차원의 유전자 벡터를 입력 받는 다층 퍼셉트론 모델보다 더 높은 예측 정확도를 보여주는 것을 확인하였다.

Music Genre Classification using Spikegram and Deep Neural Network (스파이크그램과 심층 신경망을 이용한 음악 장르 분류)

  • Jang, Woo-Jin;Yun, Ho-Won;Shin, Seong-Hyeon;Cho, Hyo-Jin;Jang, Won;Park, Hochong
    • Journal of Broadcast Engineering
    • /
    • v.22 no.6
    • /
    • pp.693-701
    • /
    • 2017
  • In this paper, we propose a new method for music genre classification using spikegram and deep neural network. The human auditory system encodes the input sound in the time and frequency domain in order to maximize the amount of sound information delivered to the brain using minimum energy and resource. Spikegram is a method of analyzing waveform based on the encoding function of auditory system. In the proposed method, we analyze the signal using spikegram and extract a feature vector composed of key information for the genre classification, which is to be used as the input to the neural network. We measure the performance of music genre classification using the GTZAN dataset consisting of 10 music genres, and confirm that the proposed method provides good performance using a low-dimensional feature vector, compared to the current state-of-the-art methods.

A Study on Face Recognition using Neural Networks and Characteristics Extraction based on Differential Image and DCT (차영상과 DCT 기반 특징 추출과 신경망을 이용한 얼굴 인식에 관한 연구)

  • 임춘환;고낙용;박종안
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.8B
    • /
    • pp.1549-1557
    • /
    • 1999
  • In this paper, we propose a face recognition algorithm based on the differential image method-DCT This algorithm uses neural networks which is flexible for noise. Using the same condition (same luminous intensity and same distance from the fixed CCD camera to human face), we have captured two images. One doesn't contain human face. The other contains human face. Differential image method is used to separate the second image into face region and background region. After that, we have extracted square area from the face region, which is based on the edge distribution. This square region is used as the characteristics region of human face. It contains the eye bows, the eyes, the nose, and the mouth. After executing DCT for this square region, we have extracted the feature vectors. The feature vectors were normalized and used as the input vectors of the neural network. Simulation results show 100% recognition rate when face images were learned and 92.25% recognition rate when face images weren't learned for 30 persons.

  • PDF

A Mechanism to Determine Method Location among Classes using Neural Network (신경망을 이용한 클래스 간 메소드 위치 결정 메커니즘)

  • Jung, Young-A.;Park, Young-B.
    • The KIPS Transactions:PartB
    • /
    • v.13B no.5 s.108
    • /
    • pp.547-552
    • /
    • 2006
  • There have been various cohesion measurements studied considering reference relation among attributes and methods in a class. Generally, these cohesion measurement are camed out in one class. If the range of reference relation considered are extended from one class to two classes, we could find out the reference relation between two classes. Tn this paper, we proposed a neural network to determine the method location. Neural network is effective to predict output value from input data not to be included in training and generalize after training input and output pattern repeatedly. Learning vector is generated with 30-dimensional input vector and one target binary values of method location in a constraint that there are two classes which have less than or equal to 5 attributes and methods The result of the proposed neural network is about 95% in cross-validation and 88% in testing.

A Tensor Space Model based Deep Neural Network for Automated Text Classification (자동문서분류를 위한 텐서공간모델 기반 심층 신경망)

  • Lim, Pu-reum;Kim, Han-joon
    • Database Research
    • /
    • v.34 no.3
    • /
    • pp.3-13
    • /
    • 2018
  • Text classification is one of the text mining technologies that classifies a given textual document into its appropriate categories and is used in various fields such as spam email detection, news classification, question answering, emotional analysis, and chat bot. In general, the text classification system utilizes machine learning algorithms, and among a number of algorithms, naïve Bayes and support vector machine, which are suitable for text data, are known to have reasonable performance. Recently, with the development of deep learning technology, several researches on applying deep neural networks such as recurrent neural networks (RNN) and convolutional neural networks (CNN) have been introduced to improve the performance of text classification system. However, the current text classification techniques have not yet reached the perfect level of text classification. This paper focuses on the fact that the text data is expressed as a vector only with the word dimensions, which impairs the semantic information inherent in the text, and proposes a neural network architecture based upon the semantic tensor space model.

Neural Network Pair with Negatively Correlated Genes for Cancer Classification (암의 분류를 위한 음의 상관관계 유전자의 신경망 쌍)

  • 원홍희;조성배
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04c
    • /
    • pp.359-361
    • /
    • 2003
  • 정확한 암의 분류는 암의 진단 및 치료에 있어 매우 중요하지만, 암을 진단하기 위한 기존의 여러 방법들은 종종 불완전한 결과를 도출한다. 최근의 마이크로어레이 기술에 기반한 분자 수준의 진단은 정확하고 객관적이며 체계적인 암의 분류를 위한 방법론을 제시해준다. 유전자 발현 데이터는 일반적으로 수천개 이상의 유전자를 포함하는데, 유전자 발현 데이터의 모든 유전자가 암과 관련이 있는 것이 아니므로 정확한 암을 분류하기 위하여 중요한 유전자만을 추출하는 것이 바람직하다. 본 논문에서 음의 상관관계를 갖는 두 개의 이상적인 유전자 벡터를 정의한 후 이와 유사한 정도를 기준으로 중요한 유전자 집단을 추출하고, 각각을 신경망으로 학습하여 결합하는 신경망 쌍을 제안한다. 실험 결과는 음의 상관관계를 갖는 두 개의 유전자 집단이 암의 클래스를 잘 구분할 수 있음을 보여주었다. 이 유전자 집단을 특징으로 하여 각각 학습한 신경망을 베이시안 방법으로 결합한 결과, 벤치마크 데이터에 대하여 신경망 쌍이 개별 분류기에 비해 우수한 성능을 보임을 확인하였다.

  • PDF