• 제목/요약/키워드: 베이지안 확률 모형

검색결과 100건 처리시간 0.028초

베이지안 네트워크를 활용한 기상학적 가뭄의 확률론적 예측 (Prediction of Probabilistic Meteorological Drought Using Bayesian Network)

  • 신지예;권현한;김태웅
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2015년도 학술발표회
    • /
    • pp.20-20
    • /
    • 2015
  • 최근 기후변화의 영향으로 전 세계적으로 홍수와 가뭄의 발생빈도가 증가하고 있다. 특히, 가뭄은 우리나라에서 겨울과 봄철을 중심으로 매년 발생되고 있다. 가뭄의 정확한 발생을 판단하기는 어려우나, 가뭄이 발생되면 그 진행속도는 홍수보다 느리기 때문에 초기에 가뭄의 발생가능성을 예측한다면 가뭄에 대한 피해를 줄일 수 있다. 따라서 최근 가뭄 예측에 대한 다양한 연구가 이루어지고 있다. 본 연구에서는 가뭄발생의 불확실성을 내포하기 위하여 Bayesian Network (BN) 모형과 SPI의 자기상관성을 바탕으로 가까운 미래의 가뭄 발생확률을 예측하는 방법을 제안하였다. BN은 변수들 간의 인과관계를 확률적으로 나타낼 수 있는 네트워크 모형으로, 자연현상에 대한 위험도 분석 및 의학 분야에서 질병추정을 위한 모형으로 활용되고 있다. 본 연구에서는 가까운 미래의 가뭄 예측을 위하여 APEC 기후센터(APEC Climate Center, APCC)에서 제공하는 다중모형앙상블(Multi-model Ensemble, MME) 강우예측 결과로 도출한 미래 SPI 및 과거 강우량 자료로 구축한 SPI를 부모노드로, 예측 SPI를 자식노드로 BN을 구축하였다. BN의 각각의 노드를 Gaussian 확률분포모형으로 가정한 뒤, Likelihood weighting 방법으로 주변사후분포확률(Marginal posterior distribution)을 추정하여 미래의 SPI의 발생확률을 계산하였다. 2008년부터 2013년의 BN 가뭄 예측값과 MME 강우예측 결과로 도출한 SPI를 실제 관측 강우량으로 산정한 SPI와 비교하였으며, BN이 실제 관측결과에 가까운 결과가 도출되었다. 본 연구에서는 BN을 활용하여 가까운 미래의 가뭄 발생가능성을 확률적으로 나타낼 수 있는 방법을 제시하였으며, 그 결과 가뭄상태별 가뭄 발생확률이 산정되었다.

  • PDF

베이지안 실험계획법의 이해와 응용 (Understanding Bayesian Experimental Design with Its Applications)

  • 이군희
    • 응용통계연구
    • /
    • 제27권6호
    • /
    • pp.1029-1038
    • /
    • 2014
  • 본 연구에서는 베이지안 실험계획법에 대하여 논의하고 간단한 모의실험을 통하여 최적화된 베이지안 실험계획법이 어떠한 특징을 가지고 있는지 설명하였다. 실험을 설계하는 경우 연구자는 관심있는 주제가 모수추정인지 아니면 예측인지를 결정하고 사전확률과 우도함수를 기반으로 이에 맞는 사후확률을 찾아 효용함수와 결합하여 최적의 실험설계를 찾는 것이 베이지안 실험계획법의 기본 원리이다. 만일 사전적 정보가 존재하지 않는다면 무정보적 부적합 사전확률을 이용하여 실험을 설계할 수 있으며, 이는 비 베이지안적 접근방법과 일치하게 된다. 만일 모수나 예측값에 대한 사전적 정보가 존재하는 경우에는 베이지안 실험계획법이 유일한 해결 방법이다. 하지만 모형의 복잡도가 증가하게 되면, 최적해를 찾는 과정이 매우 복잡해져서 극복해야 하는 많은 문제점들이 존재하므로 향후 많은 연구가 필요한 분야이다.

확률베타모형의 베이지안 분석 (Bayesian Analysis of a Stochastic Beta Model in Korean Stock Markets)

  • 고봉찬;예승민
    • 재무관리연구
    • /
    • 제22권2호
    • /
    • pp.43-69
    • /
    • 2005
  • 본 논문은 한국 주식시장에서 CAPM 베타의 시간에 따른 변동패턴을 설명하는데 있어서 베이지안 분석기법에 기반을 둔 확률베타모형(stochastic be model)이 기존의 조건부 베타모형이나 이변량 GARCH(1,1)모형보다 추정의 정확도나 베타의 설명력 측면에서 더 우월하다는 실증적 증거를 보여주었다. 확률베타모형으로 추정한 베타는 주식수익률의 횡단면 변동의 $30{\sim}50%$를 설명하는 반면, 다른 시변베타모형은 3% 이하의 설명력에 그쳤다. 이렇게 확률베타모형에서 추정된 베타의 높은 설명력은 흔히 시장이상현상으로 받아들여지고 있는 기업규모효과나 장부가/시가비율효과, 고유변동성효과들을 대부분 흡수하는 것으로 나타났다. 이것은 시장이상 현상들이 베타 참값의 변동과 밀접하게 관련되어 있으며, 기대수익률 변동과 깊은 관련이 있다는 합리적 자산가격결정의 입장을 지지하는 것으로 해석된다.

  • PDF

베이지안 네트워크를 이용한 전자상거래 고객들의 성향 분석 (Analysis of Web Customers Using Bayesian Belief Networks)

  • 양진산;장병탁
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2000년도 추계학술대회 학술발표 논문집
    • /
    • pp.387-392
    • /
    • 2000
  • 전자 상거래에서 고객의 성향을 이해하기 위해서는 일반적으로 판매 실무에서의 경험과 전문적인 지식을 필요로 하게 된다. 데이터 마이닝은 고객들에 대한 데이터의 분석을 통해서 이러한 성향들을 알아내는 것을 목표로 한다. 베이지안 네트워크는 DAG(Directed Acyclic Graph)를 이용하여 데이터의 구조를 시각적으로 표현하여 주는 확률모형으로 변수사이의 종속관계를 밝히고 데이터 마이닝의 기법으로 이용할 수 있다. 본 논문에서는 베이지안 네트워크를 사용하여 전자 상거래 고객들의 성향을 분석하기 위한 방법을 제시한다. 또한 고객성향에 대한 주요 요인을 분석하기 위해 Descriminant 모형을 이용하고 그 유용성을 다른 방법들과 비교하였다.

  • PDF

베이지안 신경망을 이용한 분류분석 (A Classification Analysis using Bayesian Neural Network)

  • 황진수;최성용;전홍석
    • Journal of the Korean Data and Information Science Society
    • /
    • 제12권2호
    • /
    • pp.11-25
    • /
    • 2001
  • 자료들 사이에 존재하는 관계, 패턴, 규칙등을 찾아내서 모형화 하는 통계적인 분류기법은 여러가지가 있다. 그러나 우리가 얻게 되는 지식은 어떤 일련의 분류규칙에 의해서가 아닌 관찰과 학습을 통한 훈련으로부터 얻게 된다. 본 베이지안 학습은 모든 형태의 불확실성을 표현하는 확률로써 우리의 믿음의 정도를 표현하는 것으로 해석될 수 있으며, 확실한 결과가 알려짐에 따라 확률이론 법칙을 사용하여 이러한 확률들을 갱신한다. 또한 신경망 모형은 이미 알고 있는 속성들에 근거하여 아직 알지 못하는 집단이나 특질들을 예측하게 해준다. 본 논문에서는 이러한 두 가지 방법을 결합한 베이지안 신경망과 기존의 CHAID, CART, QUBST 분류 알고리즘에 있어서 각각 오분류율을 비교연구하였다.

  • PDF

베이지안 접근법과 모수불확실성을 반영한 보험위험 측정 모형 (Bayesian analysis of insurance risk model with parameter uncertainty)

  • 조재린;지혜수;이항석
    • Journal of the Korean Data and Information Science Society
    • /
    • 제27권1호
    • /
    • pp.9-18
    • /
    • 2016
  • 모수불확실성을 반영하는 손실모형으로는 Heckman과 Meyers가 제안한 모형이 주로 인용되고 있다. 이 모형은 모수 자체가 어떤 확률분포를 따른다는 가정을 하고 있으며 IAA, Swiss Solvency Test, EU Solvency II 등에서 참고하고 있다. 반면 베이지안 기법을 이용한 연구는 모수에 대한 선험적 정보 즉, 사전분포를 이용하여 모수불확실성을 반영한다. 그러나 현실에서는 두 가지 방법을 동시에 고려해야 하는 상황이 빈번히 발생한다. 이에 본 연구는 Heckman-Meyers의 모형과 베이지안 접근법을 동시에 고려한 베이지안 H-M CRM모형을 제안하고 그 특성을 분석하였다.

베이지안 신경망을 이용한 보행자 사망확률모형 개발 (Development of Pedestrian Fatality Model using Bayesian-Based Neural Network)

  • 오철;강연수;김범일
    • 대한교통학회지
    • /
    • 제24권2호
    • /
    • pp.139-145
    • /
    • 2006
  • 본 논문에서는 보행-차량 충돌사고 시 보행자 사망 여부를 확률적으로 예측할 수 있는 모형을 개발하였다. 베이지안 신경망을 적용하여 보행자 사망확률모형을 개발하고, 로지스틱 회귀분석 기법 기반의 모형과 예측력을 비교하였다. 본 연구를 위하여 개별 교통사고 자료를 수집하였으며, 교통사고 재현을 통해 사고 당시의 충돌속도를 추정하여 보행자 연령, 차종과 함께 모형의 독립변수로 사용하였다. 보다 정확하고 신뢰성 있는 모형개발을 위해 반복적 샘플링기법을 적용하여, 다양한 학습자료 및 테스트 자료를 구성하고 모형의 성능을 평가하였다 본 연구를 통해 개발된 모형은 보행자 보호를 위한 첨단차량기술 개발, 제한속도의 설정 등 다양한 정책 및 관련기술의 개발을 지원하는 유용한 도구로 사용될 것으로 기대된다.

베이지안 GTM을 이용한 패턴 분류 (Pattern Classification by Using Bayesian GTM)

  • 최준혁;김중배;김대수;임기욱
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2001년도 추계학술대회 학술발표 논문집
    • /
    • pp.287-290
    • /
    • 2001
  • Bishop이 제안한 generative Topographic Mapping(GTM)은 Kohonen이 제안한 자율 학습 신경망인 Self Organizing Maps(SOM)의 확률적 버전이다. 본 논문에서는 이러한 GTM 모형에 베이지안 추론을 결합하여 작은 오분류율을 가지는 분류 알고리즘인 베이지안 GTM(Bayesian GTM)을 제안한다. 이 방법은 기존의 GTM의 빠른 계산 처리 능력과 베이지안 추론을 이용하여 기존의 분류 알고리즘보다 우수한 결과가 나타남을 실험을 통하여 확인하였다.

  • PDF

가뭄의 전이 현상을 고려한 수문학적 가뭄에 대한 베이지안 네트워크 기반 확률 예측 (Bayesian networks-based probabilistic forecasting of hydrological drought considering drought propagation)

  • 신지예;권현한;이주헌;김태웅
    • 한국수자원학회논문집
    • /
    • 제50권11호
    • /
    • pp.769-779
    • /
    • 2017
  • 최근 우리나라에서 빈번하게 발생되는 가뭄으로 인하여 많은 피해가 발생하고 있으며, 이에 대한 사전대응의 필요성이 커지고 있다. 가뭄에 대한 효과적인 사전대응을 위해서는 신뢰성 있는 가뭄 예측 정보가 필수적이다. 본 연구에서는 수문학적 가뭄에 대한 확률론적 예측을 수행하기 위하여 가뭄의 전이현상을 베이지안 네트워크 모형에 반영하였다. 가뭄의 전이현상을 고려한 베이지안 네트워크 기반의 가뭄 예측 모형(PBNDF)은 과거, 현재, 미래에 대한 다중 모형 앙상블 예측결과와 가뭄전이 관계를 결합하여 새로운 수문학적 가뭄 예측 결과를 생산하도록 구축되었다. 본 연구에서 PBNDF 모형은 파머수문학적 가뭄지수를 활용하여 낙동강 유역의 10개 지점을 대상으로 가뭄을 확률적으로 예측하는데 적용되었다. PBNDF 모형의 ROC 분석 결과 ROC 점수가 0.5 이상의 유의한 결과를 나타내 실제 예측 모형으로 활용가능하다는 것을 확인할 수 있었다. 또한, 기존에 개발된 모형(지속성 예측, 베이지안 네트워크 예측 모형)과 평균제곱오차의 제곱근(RMSE), 기술 점수(SS)를 활용하여 비교를 수행하였으며, 그 결과 PBNDF 모형의 RMSE는 상대적으로 낮은 값을 가지며, SS는 약 0.1~0.15 정도 높은 것으로 나타나 예측성능이 향상되었다는 것을 확인할 수 있었다.

정규확률변수 관측치열에 대한 베이지안 변화점 분석 : 서울지역 겨울철 평균기온 자료에의 적용 (Bayesian Change Point Analysis for a Sequence of Normal Observations: Application to the Winter Average Temperature in Seoul)

  • 김경숙;손영숙
    • 응용통계연구
    • /
    • 제17권2호
    • /
    • pp.281-301
    • /
    • 2004
  • 본 논문에서는 일변량 정규분포를 따르는 확률변수의 관측치열에 대한 변화점 문제(change point problem)를 고찰한다. 변화점의 존재유무, 그리고 만일 변화점이 존재한다면 어떠한 유형으로 발생했는지 즉, 변화점 발생 이후로 평균만 변화, 분산만 변화, 또는 평균과 분산 모두가 변화했는지를 밝힌다. 가능한 여러 유형의 변화모형들 가운데 최적의 모형을 선택하기 위해 베이지안 모형선택 기법을 이용하고, 선택된 모형에 내재된 모수를 추정 하기 위해 메트로폴리스-혜스팅스 알고리 즘을 포함한 깁스샘플링 을 이용한다. 이러한 방법론은 모의실험을 통해 검토되고, 또한 서울지역의 겨울철 평균기온 자료에 적용된다.