• Title/Summary/Keyword: 베이지안 예측모형

Search Result 78, Processing Time 0.022 seconds

Bayesian VAR Analysis of Dynamic Relationships among Shipping Industry, Foreign Exchange Rate and Industrial Production (Bayesian VAR를 이용한 해운경기, 환율 그리고 산업생산 간의 동태적 상관분석)

  • Kim, Hyunsok;Chang, Myunghee
    • Journal of Korea Port Economic Association
    • /
    • v.30 no.2
    • /
    • pp.77-92
    • /
    • 2014
  • The focus of this study is to analyse dynamic relationship among BDI(Baltic Dry-bulk Index, hereafter BDI), forex market and industrial production using monthly data from 2003-2013. Specifically, we have focused on the investigations how monetary and real variable affect shipping industry during recession period. To compare performance between general VAR and Bayesian VAR we first examine DAG(Directed Acyclic Graph) to clarify causality among the variables and then employ MSFE(mean squared forecast error). The overall estimated results from impulse-response analysis imply that BDI has been strongly affected by other shock, such as forex market and industrial production in Bayesian VAR. In particular, Bayesian VAR show better performance than general VAR in forecasting.

Improvement of streamflow forecast using a Bayesian inference approach (베이지안 기법을 통한 유량예측 정확도 개선)

  • Seo, Seung Beom;Kim, Young-Oh;Kang, Shin-Uk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.303-303
    • /
    • 2018
  • 안정적인 수자원 운용을 위해서는 정확한 유량예측 기술이 필요하다. 본 연구에서는 유량예측 정확도의 개선을 위해 베이지안 추론(Bayesian inference) 기법과 앙상블 유량 예측(Ensemble Streamflow Prediction, ESP) 기법의 결합을 통한 새로운 유량예측 기법(Bayesian ESP)을 제안하였다. ESP를 통한 유량 예보 앙상블은 베이지안 추론의 사전정보로 활용되며, 관측 유량과 ESP 전망 결과의 선형관계를 통해 우도함수가 추정된다. 우도함수는 관측 유량이 존재하는 과거 기간에 대한 ESP를 수행한 후 예보 시점의 관측 유량(concurrent observed flow)과 선행 관측 유량(lagged observed flow)과의 다중선형회귀 모형을 통해 추정된다. 사전정보와 우도함수는 정규분포로 가정되며, 따라서 최종 유량예측인 사후정보 역시 정규분포함수로 산정되게 된다. Bayesian ESP은 ESP에서 발생하는 강우-유출모형 오차의 개선을 통해 수문예측의 정확도를 개선하게 되며 정규분포함수로 최종 결과가 산정되므로 확률예보 형태의 수문 전망도 가능하다. 본 기법을 전국 35개 댐 유역에 시범적용을 한 결과, 모든 유역에서 기존 ESP 기법 대비 수문예측 정확도의 개선을 가져왔으며, 우도함수 추정에 있어 선행 유량의 포함 여부가 수문 예측 정확도의 추가적인 개선을 가져왔다. 본 기법은 주간 예보부터 계절 예보까지 탄력적으로 구축이 가능하며 적용 결과 리드 타임이 길어질수록 예측 능력이 감소되었지만 전체 구간에 있어서 Bayesian ESP 기법이 가장 우수한 예측 정확도를 보여주었다.

  • PDF

A Study for Forecasting Methods of ARMA-GARCH Model Using MCMC Approach (MCMC 방법을 이용한 ARMA-GARCH 모형에서의 예측 방법 연구)

  • Chae, Wha-Yeon;Choi, Bo-Seung;Kim, Kee-Whan;Park, You-Sung
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.2
    • /
    • pp.293-305
    • /
    • 2011
  • The volatility is one of most important parameters in the areas of pricing of financial derivatives an measuring risks arising from a sudden change of economic circumstance. We propose a Bayesian approach to estimate the volatility varying with time under a linear model with ARMA(p, q)-GARCH(r, s) errors. This Bayesian estimate of the volatility is compared with the ML estimate. We also present the probability of existence of the unit root in the GARCH model.

The performance of Bayesian network classifiers for predicting discrete data (이산형 자료 예측을 위한 베이지안 네트워크 분류분석기의 성능 비교)

  • Park, Hyeonjae;Hwang, Beom Seuk
    • The Korean Journal of Applied Statistics
    • /
    • v.33 no.3
    • /
    • pp.309-320
    • /
    • 2020
  • Bayesian networks, also known as directed acyclic graphs (DAG), are used in many areas of medicine, meteorology, and genetics because relationships between variables can be modeled with graphs and probabilities. In particular, Bayesian network classifiers, which are used to predict discrete data, have recently become a new method of data mining. Bayesian networks can be grouped into different models that depend on structured learning methods. In this study, Bayesian network models are learned with various properties of structure learning. The models are compared to the simplest method, the naïve Bayes model. Classification results are compared by applying learned models to various real data. This study also compares the relationships between variables in the data through graphs that appear in each model.

기업부도예측을 위한 통합알고리즘

  • Bae Jae-Gwon;Kim Jin-Hwa
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2006.06a
    • /
    • pp.195-202
    • /
    • 2006
  • 본 연구에서는 보다 효과적인 기업부도예측을 위하여, 동계적 방법과 인공지능 방법을 결합한 통합모형을 제시하였다. 이를 위하여 통계적인 모형 중에서 가장 널리 활용되고 있는 다변량 판별분석, 로지스틱 회귀분석과 인공 지능적인 방법으로서 최근 널리 사용되고 있는 인공신경망, 규칙유도기법, 베이지안 망의 5가지 방법론을 통합한 Voting with Performance & Weights from ANN(WP-ANN) 통합모형을 제시하였다. 실험결과, 본 연구에서 제안한 WP-ANN 통합모형은 다변량 판별분석, 로지스탁 회귀분석, 인공신경망, 규칙유도기법, 베이지안 망 등의 단일모형과 비교한 결과 가장 예측정확성이 유수한 것으로 나타났다. 따라서 본 연구를 통해 기업부도예측에 있어서 WP-ANN 통합모형이 기존의 모형들에 비해 우수한 예측정확성을 나타냄을 알 수 있었다.

  • PDF

Bayesian networks-based probabilistic forecasting of hydrological drought considering drought propagation (가뭄의 전이 현상을 고려한 수문학적 가뭄에 대한 베이지안 네트워크 기반 확률 예측)

  • Shin, Ji Yae;Kwon, Hyun-Han;Lee, Joo-Heon;Kim, Tae-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.11
    • /
    • pp.769-779
    • /
    • 2017
  • As the occurrence of drought is recently on the rise, the reliable drought forecasting is required for developing the drought mitigation and proactive management of water resources. This study developed a probabilistic hydrological drought forecasting method using the Bayesian Networks and drought propagation relationship to estimate future drought with the forecast uncertainty, named as the Propagated Bayesian Networks Drought Forecasting (PBNDF) model. The proposed PBNDF model was composed with 4 nodes of past, current, multi-model ensemble (MME) forecasted information and the drought propagation relationship. Using Palmer Hydrological Drought Index (PHDI), the PBNDF model was applied to forecast the hydrological drought condition at 10 gauging stations in Nakdong River basin. The receiver operating characteristics (ROC) curve analysis was applied to measure the forecast skill of the forecast mean values. The root mean squared error (RMSE) and skill score (SS) were employed to compare the forecast performance with previously developed forecast models (persistence forecast, Bayesian network drought forecast). We found that the forecast skill of PBNDF model showed better performance with low RMSE and high SS of 0.1~0.15. The overall results mean the PBNDF model had good potential in probabilistic drought forecasting.

A Bayesian Prediction of the Generalized Pareto Model (일반화 파레토 모형에서의 베이지안 예측)

  • Huh, Pan;Sohn, Joong Kweon
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.6
    • /
    • pp.1069-1076
    • /
    • 2014
  • Rainfall weather patterns have changed due to global warming and sudden heavy rainfalls have become more frequent. Economic loss due to heavy rainfall has increased. We study the generalized Pareto distribution for modelling rainfall in Seoul based on data from 1973 to 2008. We use several priors including Jeffrey's noninformative prior and Gibbs sampling method to derive Bayesian posterior predictive distributions. The probability of heavy rainfall has increased over the last ten years based on estimated posterior predictive distribution.

A Hierarchical Bayesian Modeling of Temporal Trends in Return Levels for Extreme Precipitations (한국지역 집중호우에 대한 반환주기의 베이지안 모형 분석)

  • Kim, Yongku
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.2
    • /
    • pp.137-149
    • /
    • 2015
  • Flood planning needs to recognize trends for extreme precipitation events. Especially, the r-year return level is a common measure for extreme events. In this paper, we present a nonstationary temporal model for precipitation return levels using a hierarchical Bayesian modeling. For intensity, we model annual maximum daily precipitation measured in Korea with a generalized extreme value (GEV). The temporal dependence among the return levels is incorporated to the model for GEV model parameters and a linear model with autoregressive error terms. We apply the proposed model to precipitation data collected from various stations in Korea from 1973 to 2011.

Prediction in run-off triangle using Bayesian linear model (삼각분할표 자료에서 베이지안 모형을 이용한 예측)

  • Lee, Ju-Mi;Lim, Jo-Han;Hahn, Kyu-S.;Lee, Kyeong-Eun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.2
    • /
    • pp.411-423
    • /
    • 2009
  • In the current paper, by extending Verall (1990)'s work, we propose a new Bayesian model for analyzing run-off triangle data. While Verall's (1990) work only account for the calendar year and evolvement time effects, our model further accounts for the "absolute time" effects. We also suggest a Markov Chain Monte Carlo method that can be used for estimating the proposed model. We apply our proposed method to analyzing three empirical examples. The results demonstrate that our method significantly reduces prediction error when compared with the existing methods.

  • PDF

Bayesian Learning for Self Organizing Maps (자기조직화 지도를 위한 베이지안 학습)

  • 전성해;전홍석;황진수
    • The Korean Journal of Applied Statistics
    • /
    • v.15 no.2
    • /
    • pp.251-267
    • /
    • 2002
  • Self Organizing Maps(SOM) by Kohonen is very fast algorithm in neural networks. But it doesn't show sure rules of training results. In this paper, we introduce to Bayesian Learning for Self Organizing Maps(BLSOM) which combines self organizing maps with Bayesian learning. So it supports explanatory power of models and improves prediction. BLSOM has global optima anywhere but SOM has not. This is proved by experiment in this paper.