본 연구에서는 2-모수 파레토분포에 대해 무정보사전분포인 준거사전분포의 가정 하에서 객관적 베이지안 모수추정 절차를 제안하였다. 베이지안 추정은 깁스샘플링에 의해서 수행된다. 깁스샘플러에서 모수생성하는 방법은 형태모수는 감마분포로부터 생성하고 척도모수는 적응기각표집 알고리즘에 의해 생성한다. 제안된 베이지안 모수추정 절차는 모의실험과 자료분석에서 기존의 추정방법들인 L-적률추정법, 최우추정법, 공액사전분포 하의 주관적 베이지안 모수추정법과 비교된다.
본 연구는 k개 지수분포 모수들의 기하평균에 대한 베이지안추정 방법을 제시하였다. 이를 위해 Tibshirani가 제안한 직교변환법으로 비정보적 사전확률분포를 도출하여 모수들의 결합사후확률분포를 유도해 내었으며, 이 분포 하에서 가중 몬테칼로 방법을 사용하여 기하평균을 추정하는 절차를 제안하였다. 모의실험과 실제자료의 예를 통해 제안된 베이지안 추정의 유효성 및 효용성을 보였으며, 본 연구에서 제안한 사전확률분포가 전통적인 포함확률을 기준으로 볼 때, Jeffrey의 사전확률분포 보다 더 유효한 추정을 함을 보였다.
보증 데이터를 통해 제품의 수명 및 형상모수를 추정할 때 최우추정법과 같은 전통적인 통계 분석방법(Classical Statistical Method)을 많이 사용하였다. 그러나 전통적인 통계 분석방법을 통해 수명과 형상모수의 추정 시 표본의 크기가 작거나 불완전한 경우 추정량의 신뢰성이 떨어진다는 단점이 있고 또 누적된 경험과 과거자료를 충분히 이용하지 못하는 단점도 있다. 이러한 문제점을 해결하기 위해 모수의 사전분포를 가정하는 베이지안(Bayesian) 기법의 적용이 필요하다. 하지만 보증 데이터분석에 있어서 베이지안 기법을 이용한 연구는 아직 미흡한 실정이다. 본 연구에서는 수명분포가 와이블 분포를 갖는 보증데이터를 활용하여 모수 추정의 효율성을 비교 분석하고자 한다. 이를 위해 와이블 분포의 모수가 대수정규분포를 따르는 사전분포를 갖는 베이지안 기법과 전통적 통계기법인 생명표법(Actuarial method)을 활용하여 추정량을 도출하고 비교 분석하였다. 이를 통해 충분한 관측 데이터를 확보할 수 없는 경우에 베이지안 기법을 이용한 보증 데이터 분석방법의 성능을 확인하고자 한다.
비모수 베이지안 통계 모형은 그 유연성과 계산의 편리성으로 인해 최근 다양한 분야에서 응용되고 있는데, 본 논문에서는 생물/의학/보건 연구에서 사용되는 비모수 베이지안 통계 모형에 대해서 개괄하였다. 본 논문에서는 비모수 베이지안 통계 모델링에서 핵심적으로 사용되는 확률모형들을 소개하고, 다양한 예제들을 통하여 그 모형들이 어떻게 사용되는지 이해를 돕도록 하였다. 특별히, 논의된 예제들은 모수적 통계 모형으로 고찰하기에는 한계가 있는 연구가설들을 포함하고 있어 모수적 모형의 한계점을 지적하고 비모수적 베이지안 모형의 필요성을 강조하는 것들로 정하였다. 크게 확률밀도함수 추정, 군집분석, 임의효과 분포의 추정, 그리고 회귀분석의 4가지 주제로 분류하여 살펴보았다.
신뢰성 성장 시험을 수행하며 획득하게 되는 고장 정보와 누적 시험수행시간을 이용하면 신뢰성 성장 모델의 모수 추정이 가능하며, 모수 추정을 통해 해당 제품의 MTBF를 예측할 수 있다. 그러나 시험에 대한 비용, 시간 혹은 제품의 특성 등의 여러 제약으로 인해 고장 정보가 구간적으로 획득되거나, 획득한 고장 정보의 샘플 데이터(Sample Data)의 수가 작을 수 있다. 이는 신뢰성 성장 모델의 모수 추정의 오차를 커지게 하는 원인이 될 수 있다. 본 논문에서는 샘플 데이터의 수가 작을 경우 신뢰성 성장 모델의 모수 추정 시 베이지안 기법 기반의 모수 추정 방법의 적용에 대해 연구를 수행하였다. 시뮬레이션 결과 신뢰성 성장 모델의 모수를 추정할 때, MLE를 적용하여 추정하는 방법보다 베이지안 기법을 적용하는 방법이 추정 정확도가 높음을 확인하였다.
Journal of the Korean Data and Information Science Society
/
제28권1호
/
pp.153-161
/
2017
전염병 확산에 대한 확률과정모형으로 활용되는 분기과정은 실제 데이터를 통해 모수를 추정할 수 있다는 장점이 있다. 음이항 분포를 분기과정의 생산 분포 모형으로 적용할 수 있는데 음이항 분포를 적용하기 위해서는 평균과 산포 모수를 추정하여야한다. 기존의 생물학 연구와 역학 연구 분야에서는 이를 최대우도법을 이용하여 추정하고 있다. 그러나 대부분의 역학 자료의 특성상 분기과정에서 이용되는 음이항 분포는 소표본이어서 최대우도 추정량의 정도를 충족시킬 수 없다. 본 논문에서는 소표본 자료에서 좋은 통계량의 성질을 만족한다고 알려져 있는 베이지안을 이용하여 모수를 추정하는 방법을 제안한다. 2015년 국내 메르스 사례에 베이지안 방법을 적용하여 모수를 추정하고 사후 분포를 적합하였다. 그 결과 어떠한 사전 분포를 가정하더라도 안정적으로 모수를 추정하는 것을 알 수 있었다. 추정된 산포 모수를 이용하여 분기과정에서의 전염병 소멸 확률을 유도하였다.
본 논문에서는 비정상 극치 강수 자료에 대해 계층적 베이지안 모형을 적용하여 시간에 따른 모수의 변화를 추정하며, 미래 확률 강수량에 대한 극단값 분포를 예측하고 더 나아가 반환기간에 대한 경향과 예측 값을 얻고자 한다. 이전의 고전적 통계 방법을 통한 강수 자료의 모수 추정연구의 경우, 자료의 정상성 가정 하에 고정된 모수를 추정하는 방법으로, 최근 나타난 비정상 강수 사상과 같이 강수량이 가지는 분포의 모수적 변화가 예상되는 경우 해석상 문제가 발생한다. 이러한 문제점을 해결하기 위해 모형의 관심모수에 시간에 따른 자기 상관 선형 회귀 함수를 적합한 계층적 베이지안 모형을 고려한다. 제안된 모형의 효율성을 확인하기 위해서 1973년부터 2011년까지 39년 동안의 우리나라 여러지역의 기상 관측소에서 관측된 일일 강우량 자료가 사용하여 대표적인 극단값 분포인 Generalized Extreme Value(GEV) 분포에 적합시키고, 계층적 베이지안 모형을 이용하여 이들 분포의 모수들에 자기상관 시간모형을 소개한 후 우리나라 여러지역에 대한 반환기간에 대한 시간에 따른 경향을 확인하였다.
Communications for Statistical Applications and Methods
/
제3권3호
/
pp.1-9
/
1996
본 논문에서는 일반화 회귀모형의 회귀모수${\beta}$에 대한 사전정보의 형태에 따른 각 추정량들에 대하여 연구하였다. 먼저 사전정보가 ${\beta}$에 대한 사전분포로 주어지는 경우에 해당하는 베이지안 회귀추정량을 제시하였고, 다른 하나는 ${\beta}$에 대한 사전정보모형으로 선형회귀모형식이 주어진 경우의 일반화 혼합회귀추정량에 대하여 연구하였다. 두가지 경우로부터 얻어진 각 추정량의 정도를 알아보기 위하여 각 추정량의 공분산행렬을 이 용하여 서로 비교하여 보았다. 각 추정량의 분산비들을 이용하여 일반적으로 일반화 혼합회귀추정량이 베이지안 회귀추정량들보다 비교적 작은 분산값을 가진다는 결론을 얻었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.