• 제목/요약/키워드: 베이지안 모수 추정

검색결과 70건 처리시간 0.027초

2-모수 파레토분포의 객관적 베이지안 추정 (Objective Bayesian Estimation of Two-Parameter Pareto Distribution)

  • 손영숙
    • 응용통계연구
    • /
    • 제26권5호
    • /
    • pp.713-723
    • /
    • 2013
  • 본 연구에서는 2-모수 파레토분포에 대해 무정보사전분포인 준거사전분포의 가정 하에서 객관적 베이지안 모수추정 절차를 제안하였다. 베이지안 추정은 깁스샘플링에 의해서 수행된다. 깁스샘플러에서 모수생성하는 방법은 형태모수는 감마분포로부터 생성하고 척도모수는 적응기각표집 알고리즘에 의해 생성한다. 제안된 베이지안 모수추정 절차는 모의실험과 자료분석에서 기존의 추정방법들인 L-적률추정법, 최우추정법, 공액사전분포 하의 주관적 베이지안 모수추정법과 비교된다.

베이지안 방법에 의한 K개 지수분포 모수들의 기하평균 추정에 관한 연구

  • 김대황;김혜중
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2002년도 추계 학술발표회 논문집
    • /
    • pp.169-174
    • /
    • 2002
  • 본 연구는 k개 지수분포 모수들의 기하평균에 대한 베이지안추정 방법을 제시하였다. 이를 위해 Tibshirani가 제안한 직교변환법으로 비정보적 사전확률분포를 도출하여 모수들의 결합사후확률분포를 유도해 내었으며, 이 분포 하에서 가중 몬테칼로 방법을 사용하여 기하평균을 추정하는 절차를 제안하였다. 모의실험과 실제자료의 예를 통해 제안된 베이지안 추정의 유효성 및 효용성을 보였으며, 본 연구에서 제안한 사전확률분포가 전통적인 포함확률을 기준으로 볼 때, Jeffrey의 사전확률분포 보다 더 유효한 추정을 함을 보였다.

  • PDF

베이지안 기법을 이용한 소표본 보증데이터 분석 방법 연구 (A Study of the Small Sample Warranty Data Analysis Using the Bayesian Approach)

  • 김종걸;성기우;송정무
    • 대한안전경영과학회:학술대회논문집
    • /
    • 대한안전경영과학회 2013년 춘계학술대회
    • /
    • pp.517-531
    • /
    • 2013
  • 보증 데이터를 통해 제품의 수명 및 형상모수를 추정할 때 최우추정법과 같은 전통적인 통계 분석방법(Classical Statistical Method)을 많이 사용하였다. 그러나 전통적인 통계 분석방법을 통해 수명과 형상모수의 추정 시 표본의 크기가 작거나 불완전한 경우 추정량의 신뢰성이 떨어진다는 단점이 있고 또 누적된 경험과 과거자료를 충분히 이용하지 못하는 단점도 있다. 이러한 문제점을 해결하기 위해 모수의 사전분포를 가정하는 베이지안(Bayesian) 기법의 적용이 필요하다. 하지만 보증 데이터분석에 있어서 베이지안 기법을 이용한 연구는 아직 미흡한 실정이다. 본 연구에서는 수명분포가 와이블 분포를 갖는 보증데이터를 활용하여 모수 추정의 효율성을 비교 분석하고자 한다. 이를 위해 와이블 분포의 모수가 대수정규분포를 따르는 사전분포를 갖는 베이지안 기법과 전통적 통계기법인 생명표법(Actuarial method)을 활용하여 추정량을 도출하고 비교 분석하였다. 이를 통해 충분한 관측 데이터를 확보할 수 없는 경우에 베이지안 기법을 이용한 보증 데이터 분석방법의 성능을 확인하고자 한다.

  • PDF

생물/보건/의학 연구를 위한 비모수 베이지안 통계모형 (Nonparametric Bayesian Statistical Models in Biomedical Research)

  • 노희상;박진수;심규석;유재은;정연승
    • 응용통계연구
    • /
    • 제27권6호
    • /
    • pp.867-889
    • /
    • 2014
  • 비모수 베이지안 통계 모형은 그 유연성과 계산의 편리성으로 인해 최근 다양한 분야에서 응용되고 있는데, 본 논문에서는 생물/의학/보건 연구에서 사용되는 비모수 베이지안 통계 모형에 대해서 개괄하였다. 본 논문에서는 비모수 베이지안 통계 모델링에서 핵심적으로 사용되는 확률모형들을 소개하고, 다양한 예제들을 통하여 그 모형들이 어떻게 사용되는지 이해를 돕도록 하였다. 특별히, 논의된 예제들은 모수적 통계 모형으로 고찰하기에는 한계가 있는 연구가설들을 포함하고 있어 모수적 모형의 한계점을 지적하고 비모수적 베이지안 모형의 필요성을 강조하는 것들로 정하였다. 크게 확률밀도함수 추정, 군집분석, 임의효과 분포의 추정, 그리고 회귀분석의 4가지 주제로 분류하여 살펴보았다.

베이지안 기법을 적용한 Incomplete data 기반 신뢰성 성장 모델의 모수 추정 (Parameter Estimation of Reliability Growth Model with Incomplete Data Using Bayesian Method)

  • 박천건;임지성;이상철
    • 한국항공우주학회지
    • /
    • 제47권10호
    • /
    • pp.747-752
    • /
    • 2019
  • 신뢰성 성장 시험을 수행하며 획득하게 되는 고장 정보와 누적 시험수행시간을 이용하면 신뢰성 성장 모델의 모수 추정이 가능하며, 모수 추정을 통해 해당 제품의 MTBF를 예측할 수 있다. 그러나 시험에 대한 비용, 시간 혹은 제품의 특성 등의 여러 제약으로 인해 고장 정보가 구간적으로 획득되거나, 획득한 고장 정보의 샘플 데이터(Sample Data)의 수가 작을 수 있다. 이는 신뢰성 성장 모델의 모수 추정의 오차를 커지게 하는 원인이 될 수 있다. 본 논문에서는 샘플 데이터의 수가 작을 경우 신뢰성 성장 모델의 모수 추정 시 베이지안 기법 기반의 모수 추정 방법의 적용에 대해 연구를 수행하였다. 시뮬레이션 결과 신뢰성 성장 모델의 모수를 추정할 때, MLE를 적용하여 추정하는 방법보다 베이지안 기법을 적용하는 방법이 추정 정확도가 높음을 확인하였다.

베이지안 음이항 분기과정을 이용한 한국 메르스 발생 연구 (A study on MERS-CoV outbreak in Korea using Bayesian negative binomial branching processes)

  • 박유하;최일수
    • Journal of the Korean Data and Information Science Society
    • /
    • 제28권1호
    • /
    • pp.153-161
    • /
    • 2017
  • 전염병 확산에 대한 확률과정모형으로 활용되는 분기과정은 실제 데이터를 통해 모수를 추정할 수 있다는 장점이 있다. 음이항 분포를 분기과정의 생산 분포 모형으로 적용할 수 있는데 음이항 분포를 적용하기 위해서는 평균과 산포 모수를 추정하여야한다. 기존의 생물학 연구와 역학 연구 분야에서는 이를 최대우도법을 이용하여 추정하고 있다. 그러나 대부분의 역학 자료의 특성상 분기과정에서 이용되는 음이항 분포는 소표본이어서 최대우도 추정량의 정도를 충족시킬 수 없다. 본 논문에서는 소표본 자료에서 좋은 통계량의 성질을 만족한다고 알려져 있는 베이지안을 이용하여 모수를 추정하는 방법을 제안한다. 2015년 국내 메르스 사례에 베이지안 방법을 적용하여 모수를 추정하고 사후 분포를 적합하였다. 그 결과 어떠한 사전 분포를 가정하더라도 안정적으로 모수를 추정하는 것을 알 수 있었다. 추정된 산포 모수를 이용하여 분기과정에서의 전염병 소멸 확률을 유도하였다.

한국지역 집중호우에 대한 반환주기의 베이지안 모형 분석 (A Hierarchical Bayesian Modeling of Temporal Trends in Return Levels for Extreme Precipitations)

  • 김용구
    • 응용통계연구
    • /
    • 제28권2호
    • /
    • pp.137-149
    • /
    • 2015
  • 본 논문에서는 비정상 극치 강수 자료에 대해 계층적 베이지안 모형을 적용하여 시간에 따른 모수의 변화를 추정하며, 미래 확률 강수량에 대한 극단값 분포를 예측하고 더 나아가 반환기간에 대한 경향과 예측 값을 얻고자 한다. 이전의 고전적 통계 방법을 통한 강수 자료의 모수 추정연구의 경우, 자료의 정상성 가정 하에 고정된 모수를 추정하는 방법으로, 최근 나타난 비정상 강수 사상과 같이 강수량이 가지는 분포의 모수적 변화가 예상되는 경우 해석상 문제가 발생한다. 이러한 문제점을 해결하기 위해 모형의 관심모수에 시간에 따른 자기 상관 선형 회귀 함수를 적합한 계층적 베이지안 모형을 고려한다. 제안된 모형의 효율성을 확인하기 위해서 1973년부터 2011년까지 39년 동안의 우리나라 여러지역의 기상 관측소에서 관측된 일일 강우량 자료가 사용하여 대표적인 극단값 분포인 Generalized Extreme Value(GEV) 분포에 적합시키고, 계층적 베이지안 모형을 이용하여 이들 분포의 모수들에 자기상관 시간모형을 소개한 후 우리나라 여러지역에 대한 반환기간에 대한 시간에 따른 경향을 확인하였다.

깁스표본기법을 이용한 와이블분포의 모수추정

  • 이우동;이창순;강상길
    • 한국산업정보학회논문지
    • /
    • 제3권1호
    • /
    • pp.13-21
    • /
    • 1998
  • 와이블분포의 척도모수와 형상모수를 베이지안 방법을 이용하여 추정한다. 깁스표본법을 사용하여 모수들에 대한 추정, 결합사후확률분포와 주변사후확률분포를 구한다. 9개의 열 전달기기자료와 10개의 인위적인 자료를 이용하여 제안된 방법을 적용하여 사례를 연구한다.

깁스표본기법을 이용한 와이블분포의 모수추정 (An Estimation of Parameters in Weibull Distribution using Gibbs Sampler)

  • 이우동;이창순;강상길
    • 한국산업정보학회:학술대회논문집
    • /
    • 한국산업정보학회 1997년도 추계학술대회 발표논문집:21세기를 향한 정보통신 기술의 전망
    • /
    • pp.521-533
    • /
    • 1997
  • 와이블분포에서 척도모수와 형상모수를 베이지안 방법을 이용하여 추정한다. 깁스표본법을 사용하여 모수들에 대한 추정, 결합사후확률분포 와 주변사후확률분포를 구한다. 9개의 열 전달기기자료와 10개의 인위적인 자료를 이용하여 제안된 방법을 적용하여 사례를 연구한다.

  • PDF

일반화혼합회귀 추정량과 베이지안 회귀추정량의 비교

  • 김주성;김영권
    • Communications for Statistical Applications and Methods
    • /
    • 제3권3호
    • /
    • pp.1-9
    • /
    • 1996
  • 본 논문에서는 일반화 회귀모형의 회귀모수${\beta}$에 대한 사전정보의 형태에 따른 각 추정량들에 대하여 연구하였다. 먼저 사전정보가 ${\beta}$에 대한 사전분포로 주어지는 경우에 해당하는 베이지안 회귀추정량을 제시하였고, 다른 하나는 ${\beta}$에 대한 사전정보모형으로 선형회귀모형식이 주어진 경우의 일반화 혼합회귀추정량에 대하여 연구하였다. 두가지 경우로부터 얻어진 각 추정량의 정도를 알아보기 위하여 각 추정량의 공분산행렬을 이 용하여 서로 비교하여 보았다. 각 추정량의 분산비들을 이용하여 일반적으로 일반화 혼합회귀추정량이 베이지안 회귀추정량들보다 비교적 작은 분산값을 가진다는 결론을 얻었다.

  • PDF